

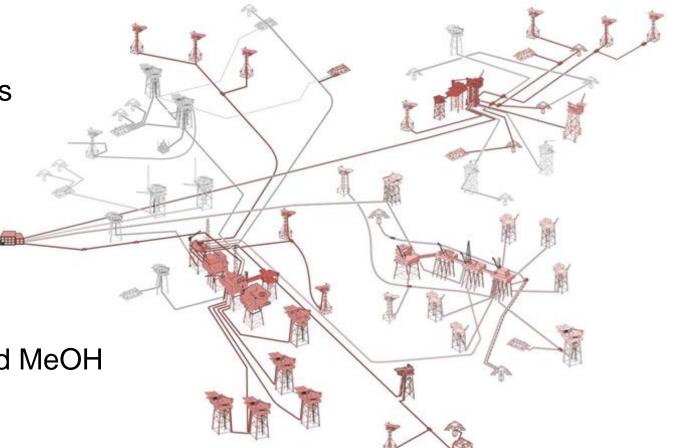
HALLIBURTON100 YEARS

Driving Pipeline Decommissioning Best Practice Through Experiential Learning

Scott MacKenzie (Technical Advisor) & Robert Davidson (Technical Advisor) – Halliburton, Pipeline and Process Services

Safety Moment: Cave Creek Disaster, New Zealand

- What Happened?
 - 28 April 1995
 - Paparoa National Park, New Zealand
 - Scenic viewing platform collapsed
 - Platform fell approximately 40 m into chasm
 - 14 people died


- Why?
 - Platform not designed or approved by a qualified engineer
 - No one involved in its construction was a qualified engineer
 - Nails were used to secure the platform instead of bolts because an appropriate drill had not been taken to the building site
 - Steps to the platform, which were supposed to act as a counterweight, had not been properly attached
 - No building consents were obtained
 - Platform not listed on any inspection register
 - Warning sign for the platform, suggesting a maximum limit of five people, had been ordered but was never installed at the site

Safety Moment: Cave Creek Disaster, New Zealand

- Lessons to be learned
 - Follow correct design and construction processes
 - Seek expert advice where required
 - Use the correct tools and materials for the job
 - Manage any changes to the design or job execution
 - Be aware of design limitations and communicate them

Introduction: Decommissioning Scope of Work

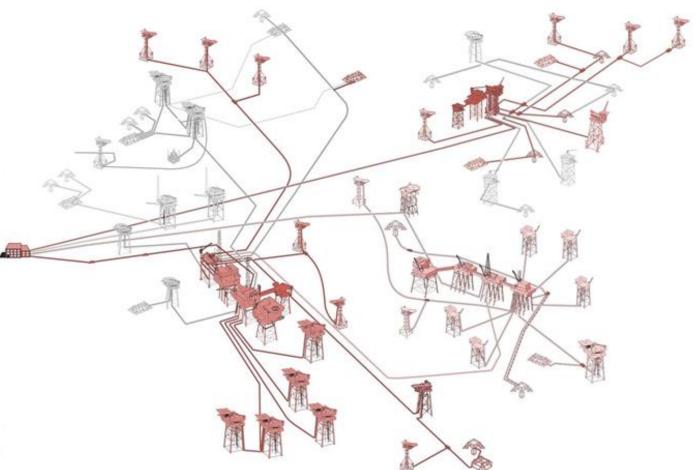
- UK Southern North Sea
- Three major gas fields
 - Gas and associated methanol lines
- Large infield infrastructure
 - 84 lines: 3 to 20 in.
 - 50m to 43 km
- Export pipelines
 - 5 lines: 16 to 36 in. with associated MeOH lines
 - 10.9 to 188 km

Challenges

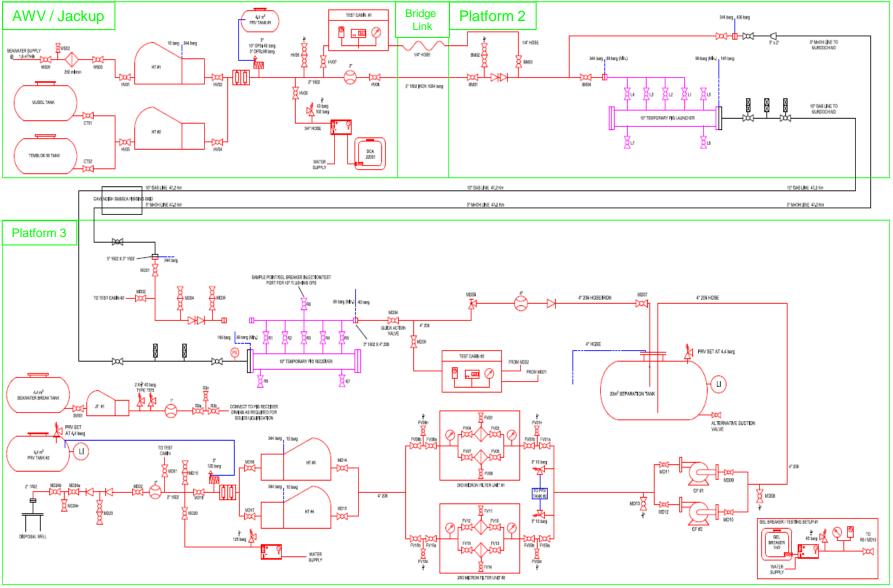
- Pipelines still contained:
 - Hydrocarbon gas
 - Condensate
 - Water
 - Methanol
 - Sludge (causing blockages in some lines)
 - NORM contaminated debris
- Some lines never pigged since commissioning
- Other lines not pigged for decades
- Lines with stuck spheres
- Some lines badly corroded

Challenges

- Multiple stakeholders
- Platform limitations (NUIs, laydown areas, craneage, etc.)
- Aging infrastructure
- SIMOPS for P&A and decom
- No established industry standards

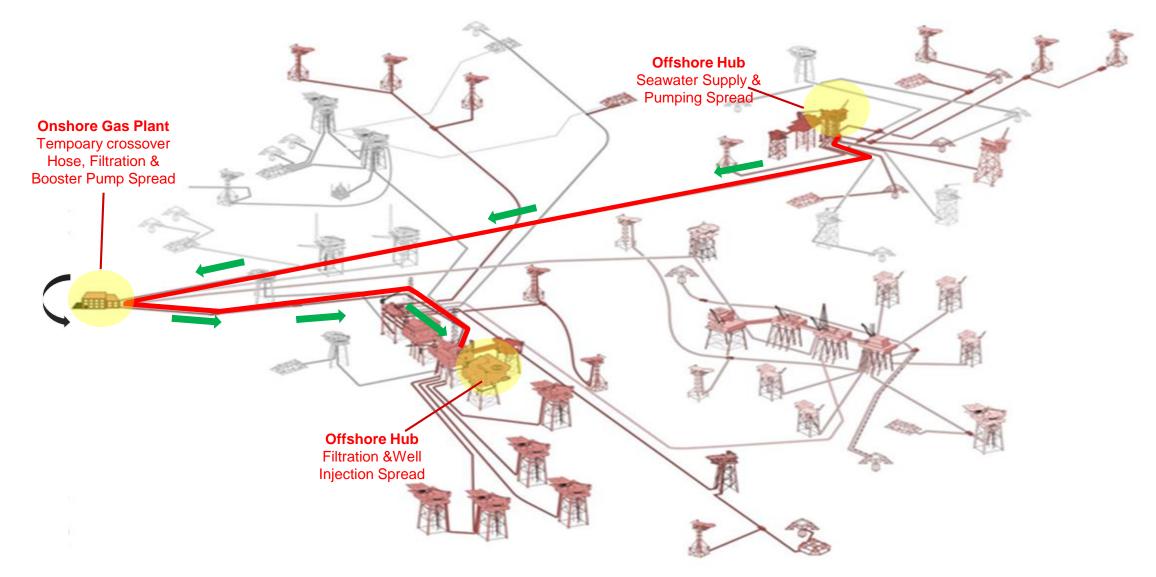

Objectives

- Remove line inventory
- Reduce hydrocarbon content to less than 30 mg/l
- Leave lines flooded with seawater
- Inject displaced fluid and solids down nominated disposal wells



Operations

- 3 distinct projects for the primary client: 1 for each field
- 5-year duration
- 89 pipelines: 1970 km
- 35 worksites: platforms and vessels
- Additional line (detail not included here)
 - Taking total length to more than 2000 k
- 7 scenarios
 - Satellite to satellite
 - Topsides to topsides
 - Topsides to subsea
 - Subsea to topsides
 - Topsides to shore
 - Topsides to shore to topsides
 - Onshore to onshore


Typical Equipment Rig Up: Satellite Platform to Hub Platform Operation

© 2019 Halliburton. All rights reserved.

HALLIBURTON

26" and 36" Gas Export Trunk Line Flushing 307km Loop

Operations: First Two Fields

Typical cleaning train: gas lines

- MeOH lines
 - Typical three-line volume flush
- Export lines
 - Pigged offshore to onshore
 - Pigged back from onshore to offshore for disposal
 - Bidirectional pigs used over foam pigs

36" X 118.7km Gas Export Flushing Station

Operations

Worksites

- Accommodation work platform (AWP)
- P&A drill rig
- Normally manned platforms
- Normally unmanned satellites
- Work vessels
- Onshore gas terminal

Supply Vessel Based Flushing Spread c/w Flushing 2" HP Hose Deployed to Satellite

Onshore Receiving and Pumping Spread at Terminal

Operations

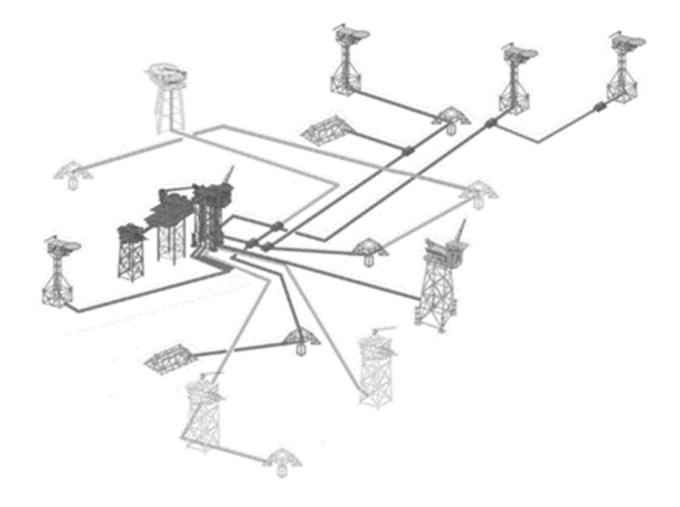
- Foam pigs used with chemicals on infield lines
- Bidirectional pigs and chemicals used on export lines
- Initial flushing of infield MeOH lines was three times the line volume
- Overflush reduced to a maximum of 20% based on received results
- Overflush on export MeOH lines at 5% in conjunction with gel slug

Example of Debris Displaced by Cleaning Trains

Debris Removed from 4" MeoH 118.7km Pipeline

36" 118.7km Gas Export Pipeline Offshore Pig Receipt

Operations: First Two Fields, Learnings

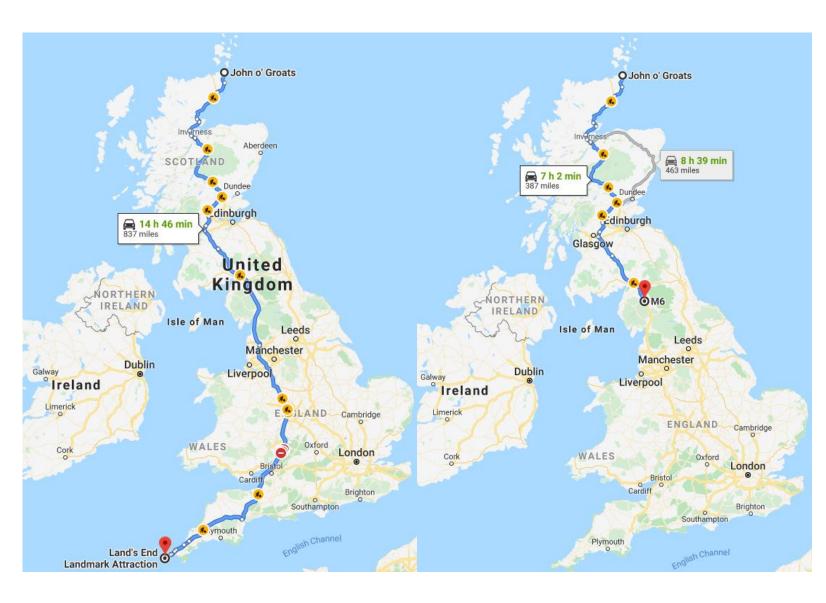

- Cleanliness achievable with flushing alone
- Cleaning efficiencies increased with a combined chemical/mechanical approach
 - Reduced overflush requirement
 - Reduced chemical requirement
 - Reduced volume for waste handling and disposal
 - Improved cleanliness results (typically)
 - Reduced operational time
 - Less impact on other ongoing decom operations (e.g., rig movements, well P&A, etc.)
 - Associated reduction in overall cost

Operations: Final Field Additional Challenges

Dead legs

Unpiggable tees

 Difficulties associated with subsea sampling of flush fluid


Operations: Final Field

- Combined pigging and chemical approach was still considered best
- Where "solid" pigs were not an option, a customized gel was designed
 - Trial performed on a platform-to-platform line
 - Trial results comparable to "solid" pig with overflush of 1.4 x line volume and 1.5 mg/l OIW
- Where sampling was impractical, agreed overflush of 1.6 x line volume was used
- This was based on previous experience and trial results
- Multiple techniques deployed
 - Solid pigs plus chemicals where architecture would allow
 - Gel and chemicals where architecture would not allow solid pigs
 - Sampling where possible
 - Calculation and agreed overflush where sampling not possible
 - Debris pickup gel included in 4-in. methanol export line

Results

- Total length of lines cleaned
 - 1970 km
 - 1,224 miles
- In 1,224 miles, you can
 - Drive from Land's End to John o'Groats
 - Then drive back to Penrith

Results and Conclusions

- Average volume pumped per line: 1.132 x line volume
- Average OIW for field: 11.57 mg/l
 - Based on three consecutive reducing samples below 30 mg/l at 15- to 30-min intervals
- 240, 530 bbl (38,240 m³⁾ of fluids and NORM-contaminated debris pumped into disposal wells
 - Reduced waste handling, minimal fluids dumped overboard

				OIW					
#	Size (")	Designation	Length (km)	(mg/l)	#	Size (")	Designation	Length (km)	Year
1	12	Gas	3.7	7.7	49	3	MeOH	3.7	2015
2	12	Gas	5.1	16.4	50	3	MeOH	5.1	2015
3	12	Gas	5.6	22.9	51	3	MeOH	5.6	2016
4	12	Gas	4.1	14	52	3	MeOH	4.1	2016
5	12	Gas	3.9	6	53	3	MeOH	3.9	2016
6	12	Gas	12	9.1	-	-	-	-	2016
7	16	Gas	0.15	By Calc	54	3	MeOH	0.15	2016
8	16	Gas	13.4	10	55	3	MeOH	13.4	2016
9	12	Gas	5	4.3	56	3	MeOH	5	2017
10	16	Gas	13.5	20.4	57	3	MeOH	13.5	2017
11	10	Gas	3.8	9.9	-	-	-	-	2017
12	16	Gas	26.9	12.2	58	3	MeOH	26.9	2016
13	24	Gas Export	10.9	14.2	59	3	MeOH	10.9	2017
14	28	Gas Export	138	18.5	60	3	MeOH	138	2017
15	12	Gas	4.5	By Calc	61	3	MeOH	4.5	2017
16	8	Gas	0.05	By Calc	-	-	-	-	2017
17	12	Gas	14	1.55	62	3	MeOH	14	2017
18	18	Gas	20	6.8	63	3	MeOH	20	2017
19	16	Gas	11	8.39	64	3	MeOH	11	2016
20	12	Gas	0.2	By Calc	65	3	MeOH	0.2	2018
21	12	Gas	20.3	26.5	66	3	MeOH	20.3	2018
22	12	Gas	42	11.3	-	-	-	-	2017
23	8	Gas	0.05	By Calc	-	-	-	-	2017
24	10	Gas	17.8	11.8	-	-	-	-	2018
25	14	Gas	4.5	6.9	67	3	MeOH	4.5	2018
26	10	Gas	22.3	16.4	68	3	MeOH	22.3	2018
27	20	Gas	16.8	10.6	69	3	MeOH	16.8	2018

				OIW					
#	Size (")	Designation	Length (km)	(mg/l)	#	Size (")	Designation	Length (km)	Year
28	10	Gas	7.5	20.2	70	3	MeOH	7.5	2018
29	10	Gas	4.3	3.5	71	3	MeOH	4.3	2018
30	10	Gas	10.6	22.6	72	3	MeOH	10.6	2018
31	18	Gas	16.1	2.5	73	3	MeOH	16.1	2018
32	12	Gas	22	4.6	74	3	MeOH	22	2018
33	12	Gas	16	4.1	75	3	MeOH	16	2018
34	10	Gas	13.5	0.8	76	3	MeOH	13.5	2018
35	14	Gas	43	16.6	77	3	MeOH	43	2018
36	10	Gas	3.7	By Calc	78	3	MeOH	3.7	2018
37	26	Gas Export	188	8.8	79	4	MeOH	188	2019
38	36	Gas Export	118.7	14.9	80	4	MeOH	118.7	2019
39	18	Gas	28	6	81	3	MeOH	28	2019
40	16	Gas	30	25.6	82	3	MeOH	30	2019
41	6	Gas	15.5	By Calc	-	-	-	-	2019
42	10	Gas	11	12.5	83	3	MeOH	11	2019
43	10	Gas	0.05	By Calc	-	-	-	-	2019
-	-	-	-	-	84	3	MeOH	10.4	2019
44	8/10	Gas	27.9	By Calc	-	-	-	-	2019
-	-	-	-	-	85	3	MeOH	8.5	2019
-	-	-	-	-	86	3	MeOH	5.5	2019
45	10/12	Gas	26.6	8	-	-	-	-	2019
46	10/12	Gas	14.2	By Calc	87	3	MeOH	14.2	2019
-	-	-	-		-	-	-	-	2019
47	12	Gas	13		-	-	-	-	2019
-	-	-	-		88	3	MeOH	12.5	2019
48	10	Gas	17.1		-	-	-	-	2019
-	-	-	-		89	2	MeOH	17	2019

Results and Conclusions

- Where possible, use a combination of pigs and chemicals for optimal cleaning with minimal pumping
- Where pigging facilities are not available, gel or viscosified fluids are a viable alternative
- Where OIW sampling is not practical, a sensible overflush volume can be calculated
- Where possible, use disposal well to minimize waste handling—consider contingency
 - Spare disposal well and alternative disposal using treatment and overboarding

