

Digital Pipeline Integrity Management

Andrew Stevenson, Suji Kurungodan, Doug Everard & Mebs Bobat Sustainable Pipeline Systems Ltd

PIGGING CHALLENGES

INTELLIGENT PIGGING

- Managing schedules and risks
- Larger footprint
- Data processing time
- PROGRESSIVE CLEANING
- Decisions based on lack of data
- PIG TRACKING
- Technology limitations
- **STUCK PIG CONTINGENCY**
- Limited provision to test contingency plans

Plate mill

Iron ore

Pipe mill

High cost, high impact; reliance on skilled manual processes and transporting short pipe sections

IS CURRENT PIPELINE CONSTRUCTION TECHNOLOGY SUSTAINABLE?

A typical 40km cross country gas transmission pipeline needs... 1000+ truck movements & 48,000m² pipe dumps

Long sequence of heavy manual processes unchanged for 75 years

Stringing

Welding

Jointing

Burial

Coating

A mobile factory moves across the terrain laying pipe

- Automated
 Construction
 - Manufactured by mobile factory
 - -Digital Quality Control
 - -Directly laid in trench
 - -Hydrotested
- Digital Operation
 - Real time data
 - All along pipeline

MOBILE AUTOMATED SPIRAL INTERLOCKED PIPE (MASIP)

Technology exploiting advances in high strength steel and manufacturing process to reduce cost, weight, material and time using a mobile automated factory to produce pipe continuously in the field.

MASIP– Flexible Pipe Structure

Technology Qualified by DNVGL

FEA and pipe tests

years life with hydrogen rich gas

Mobile Pipe Factory – Field Trials

Factory modules are shipped to site in containers, assembled in a tent and pipe made in the field

MASiP – Intelligent Pipe with Optical Fibre

Spirally wound optical fibre enables sensitive real time integrity monitoring- leak detection, 3rd party interference, pipe displacement

SPE 202988 Digital Automated Pipeline Construction

Andrew Stevenson

MASiP – Pipe trials

Pipe trials included different types of pipe section and a range of pressure cycles with hydrogen rich gas

Integrity Monitoring Dashboard

The pipeline is divided into channels of information with spatial resolution of 0.1m

MASiP – Pipe sensitivity trials

Sandbags applied to pipe under gas pressure to test optical fibre sensitivity to local change in pipe wall strain

Pipeline Map

An alerting system will 'red flag' threats in real time linked into GIS system

Design Chart

Finite Element Analysis and Physical tests lead to a simplified design chart to determine Maximum Allowable Working Pressure (MAWP)

Full Scale Field Trials

Full scale trials are planned for 2021 with Pipeline Operator participation – contact us for details

SPIRAL OPTICAL FIBRE – NEW APPROACH

- 1000x More sensitivity
- Real time data
- Good spatial resolution
- PIGGING AS REQUIRED
- Decisions based on clear and detailed data
- PIG TRACKING
- Accurate digital tracking with optical fibre
- **FIELD TRIALS OPEN TO PARTICIPATION IN 2021**
- Opportunity to try specific solutions

Acknowledgements: The authors acknowledge input from Innovate UK, National Grid Gas, Swedish Steel, Shawcor, Wood plc, DNVGL Spadeadamand OptasenseLtd

Thank you and Questions

Andrew.stevenson@sustainable-pipelines.com

www.sustainable-pipelines.com

44(0)7801 481 706