High-quality geometry module data for pipeline strain analyses

ROSEN Technology & Research Center Germany
Hendrik Aue
November 2007
Bending Strain

Strain

Distance
Contents

1. Introduction
2. Measurement Methods
3. Test Environment
4. Performance
5. Inspection Extensions
6. Conclusions
Bending the Pipeline can lead to Strain
Bending the Pipeline

R = ?
Bending the Pipeline

Bends are a Change in the Curvature κ of a Pipeline

Curvature equivalent Radius in [m]:

$$R[m] = \frac{1}{\kappa}$$

Not-bended Pipeline (straight):
Radius is infinite

Bended Pipeline:
Radius of 1000 m (e.g.)
Curvature and Bending Strain

Bends are a Change in the Curvature κ of a Pipeline

Strain is equivalent to the Curvature: \[\varepsilon = \frac{D}{2\kappa} \]

The Bending Strain Radius is: \[R[D] = \frac{R[m]}{D} \]
Curvature and Bending Strain

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Radius</th>
<th>Bending Strain Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10"</td>
<td>3600D</td>
<td>0.01%</td>
</tr>
<tr>
<td>16"</td>
<td>2400D</td>
<td>0.02%</td>
</tr>
<tr>
<td>24"</td>
<td>1600D</td>
<td>0.025%</td>
</tr>
<tr>
<td>36"</td>
<td>1100D</td>
<td>0.045%</td>
</tr>
<tr>
<td>56"</td>
<td>700D</td>
<td>0.07%</td>
</tr>
</tbody>
</table>
Summary

Bends are a Change in the Curvature κ of a Pipeline

Bending Strain is Curvature related to the Pipe Diameter

e.g. constant Curvature, with differing strain results for different Pipeline Diameters

e.g. the greater the Pipeline Diameter, the more force is needed to bend it
Contents

1. Introduction
2. Measurement Methods
3. Test Environment
4. Performance
5. Inspection Extensions
6. Conclusions
How to Measure Bending Strain?

\[R[D] = ? \]

\[R[m] = ? \]
Direct Strain Measurement

Strain Gauges:

- Sensor in direct contact with the pipeline
- Local Strain Measurement
Direct Strain Measurement

Strain Gauges:

- Rather not applicable?
Direct Curvature Measurement

GPS / Geodetic Measurements:

- GPS Points on top of the pipeline
- Local Curvature Measurement
Direct Curvature Measurement

GPS / Geodetic Measurements:

- Soil of the Pipeline must be removed
- Rather not applicable?
Pipeline Inspection

In-line Inspection with an XYZ System:

- Gyroscopes and Accelerometers for Navigation
- XYZ Co-ordinates of the Pipeline Trajectory
Pipeline Inspection

In-line Inspection with an XYZ System:

- XYZ System on board of a caliper tool
- High frequent XYZ Co-ordinates of the Pipeline Trajectory
- Known Curvature of the Pipeline
Contents

1. Introduction
2. Measurement Methods
3. Test Environment
4. Performance
5. Inspection Extensions
6. Conclusions
4-Point Bending

Bending of the Pipe at 4 Points:

- Pipeline fix at 2 Points
- Induced Bending Strain at 2 Points
4-Point Bending

Bending of the Pipe at 4 Points:

- Pipeline fix at 2 Points
- Induced Bending Strain at 2 Points
4-Point Bending

Bending of the Pipe at 4 Points:

- Successively induced Bending Strain
- Different Series of Bending Strain
„Shop“ Bends

Combination of Shop Bends:

- Subsequent 5D-25D-5D Bends
- Simulation of “plastic deformation”
Contents

1. Introduction
2. Measurement Methods
3. Test Environment
4. Performance
5. Inspection Extensions
6. Conclusions
Bending Strain Performance

Performance in order to answer:

- Detection Capabilities
- Repeatability
- Distinction, Accuracy
Detection of Bending Strain

Typical Bending Strain Radii:

- $R_1 = ?$
- $R_2 = ?$
- $R_3 = ?$

- Subsequent Bend Appearance: “3 Circles”
Detection of Bending Strain

Typical Bending Strain Radii:

- Strain Radius at beginning of Displacement

R1 = ?
Detection of Bending Strain

Typical Bending Strain Radii:

- Strain Radius at the maximum of Displacement
- Strain Radius at the maximum of Displacement

- Strain Radius at the maximum of Displacement

• Strain Radius at the maximum of Displacement
Detection of Bending Strain

Typical Bending Strain Radii:

- Strain Radius at the End of Displacement

\[R_2 = ? \]

\[R_1 = ? \]

\[R_3 = ? \]

- Strain Radius at the End of Displacement
Detection of Bending Strain

Bending Strain [%]:

- **R1** = Begin of Displacement
- **R2** = Maximum of Displacement
- **R3** = End of Displacement

• Strain Values in 4-Point Bending Area
Repeatability

Subsequently induced Bending Strain:

- Bending Strain Series inspected several times
- High Repeatability of Bending Strain levels
Accracy of Bending Strain:

- Comparison of several Bending Strain Results
- Accuracy reaches 0.002% or +/-5 mm displacement over 20 m of 16" Pipeline
Distinction, Accuracy

Bending Strain and Displacement Accuracy:

- Accuracy in Bending Strain equivalent to Displacement

\[R = 2500D \sim 0.02\% \]

\[+/\text{-}5 \text{ mm} \]

\[0.11 \text{ m} \]

- Accuracy in Bending Strain equivalent to Displacement

Copyright © ROSEN Group 2007
Copy prepared for PPSA Meeting November 2007

Bending Strain | Hendrik Aue | Nov 2007
Distinction, Accuracy

Bending Strain and Displacement over 30 m Distance:

- The larger the bend radius the smaller the displacement

\[R = 1600D \sim 0.03\% \]

\[0.17 \text{ m} \]
Bending Strain and Displacement over 30 m Distance:

- Smaller Bending Strain Radius with more displacement

\[R = 1000D \sim 0.05\% \]

\[0.28 \text{ m} \]

- Smaller Bending Strain Radius with more displacement
Contents

1. Introduction
2. Measurement Methods
3. Test Environment
4. Performance
5. Inspection Extensions
6. Conclusions
Mechatronic Sensor

Radius Measurement

\[\delta \] Touchless Proximity Sensor

\[\beta \] Electronic Angle Sensor
Single Geometry Inspection

ROSEN Extended Geometry Tool (RoGeo·Xt)

Two plane system: 100% coverage
Multi Purpose Tools

Mechatronic Sensor

MFL-tool with XYZ mapping
Conclusions

• Strain Detection confident from 0.01% and higher
• Repeatability of all induced Strain levels with 90%
• Accuracy of 0.002% / 5 mm displacement over 20 m of 16" Pipeline
• Combined Inspection Tools for Strain and MFL Inspection
Conclusions
Thank you for joining this presentation.