Inspection of Pipeline CP Systems with ILI Tools

Reliability * Integrity * Delivery
Agenda

• Review of Corrosion and CP of Pipelines
 • Description of the CPCM concept
 • Field trials and CPCM data
 • Benefits of CPCM
 • Acknowledgments
 • Questions & Discussion

Nov. 8th, 2007
Cathodic Protection

• Reduction or elimination of corrosion of a metal by the application of direct current from an anode through the electrolyte to the metal surface.

• Same 4 components that are needed for corrosion are required for CP. We just control where the anode and cathode are located.

• Note: The DC current is normally supplied by a galvanic anode or by an impressed current source such as a rectifier.
Standard practice is to measure the pipe-to-soil potential from the surface of the right of way at predetermined intervals. If the potential is more negative than some number (this number varies depending on many factors) then it can be assumed that at the pipe surface cathodic protection current is being applied.
Concerns with Potential readings

- Limitations of using potential based criteria can be due to many factors.
- Both cp and non-cp related influences can cause problems in the collection of accurate potential measurements.
 - Right of way access issues (urban, rural, industrial)
 - Non conductive surfaces (pavement)
 - Congested rights of way
 - Waterways
 - High earth currents both AC and DC
 - Foreign or third party CP currents
 - Transit systems
 - Power Line Corridors
 - Distance to coating holiday (well coated lines) or pipe/soil interface
CP current is being “pushed” by the rectifier to the anodes where it enters the soil (electrolyte) then travels to the pipe surface where it enters the metal (cathode) and returns via a cable or other connection (negative).

*Reliability * Integrity * Delivery
Agenda

• Review of Corrosion and CP of Pipelines
• *Description of the CPCM concept*
• Field trials and CPCM data
• Benefits of CPCM
• Acknowledgments
• Questions & Discussion
CPCM – Cathodic Protection Current Measurement

CPCM –

• Measures a voltage drop across a length of pipe (~ 2m) caused by the current flow from the CP system.

• Using Ohm’s law we can calculate the actual current.

• Changes in current at any point along the pipe gives a signature which allows us to know something about the system.
The CP circuit (pipeline)--Current Graph

• In this illustration CP current is shown in its complete circuit. Notice that the current flowing in the pipeline causes a voltage drop because the pipe is a resistor.

$\Delta V \sim I$

Anodes

Reliability * Integrity * Delivery

Nov. 8th, 2007
CPCM ILI Tool

On board caliper section used for alignment and deformation

Tool reads and records voltage difference (both AC & DC)
Between these two points.

Reliability * Integrity * Delivery

Nov. 8th, 2007
CPCM – Fast Facts

- Measure change in CP current due to poor/missing coating
- Identify galvanic anode and rectifier locations and measure current output
- Find unknown bonds and confirm bond current and locations
- 100% inspection of CP systems ensuring minimal gaps in integrity inspection data

*(Especially viable in locations where access is difficult such as offshore, swamps, mountainous terrain and congested urban areas (HCA’s))

Note: The pipeline cannot be internally coated. Build-up of scale, paraffin, bitumen may be problematic.
Agenda

- Review of Corrosion and CP of Pipelines
- Description of the CPCM concept
- **Field trials and CPCM data**
- Benefits of CPCM
- Acknowledgments
- Questions & Discussion
Field trials and data

Reliability * Integrity * Delivery

Nov. 8th, 2007
Signals

Large gains or losses over a single point = Rectifiers, Bonds, Shorts, Anodes

Large gains over several feet or meters = areas of poor coating or bare pipe – high current density

Small gains over longer areas are ideal and evidence of good coating and well distributed CP

Shallow positive (up left to right) slope across the zero line = mid point between sources and good CP coverage

Nov. 8th, 2007
Rectifier

Reliability * Integrity * Delivery

Pipe change

Rectifier

Repair Sleeves

Pipe change

current

current
Sample raw data – Rectifier and Rect/Interrupter

Reliability * Integrity * Delivery

Nov. 8th, 2007
Galvanic Anode & Short

Short 4.5 Amps

Anode at platform 1.2 Amps
Bond or Short

Bond or Short 1.8 Amps to foreign structure
8 Miles of pipeline before and after rectifier added

Area void of CP

New Rectifier

Reliability * Integrity * Delivery

Nov. 8th, 2007
Signals – cont.

Large gains or losses over a single point = Rectifiers, Bonds, Shorts, Anodes

Large gains over several feet or meters = areas of poor coating or bare pipe – high current density

Small gains over longer areas are ideal and evidence of good coating and well distributed CP

Shallow positive (up left to right) slope across the zero line = mid point between sources and good CP coverage

Nov. 8th, 2007

Reliability * Integrity * Delivery
Nov. 8th, 2007

Downstream of Rectifier w/ Filter On

Pipeline Management Group

Rectifier 5 Amps
Coating issues
Bond

Reliability * Integrity * Delivery
Area of damaged coating

Nov. 8th, 2007

Reliability * Integrity * Delivery
Large gains or losses over a single point = Rectifiers, Bonds, Shorts, Anodes
Large gains over several feet or meters = areas of poor coating or bare pipe – high current density

Small gains over longer areas are ideal and evidence of good coating and well distributed CP

Shallow positive (up left to right) slope across the zero line = mid point between sources and good CP coverage
Well coated pipe

Reliability * Integrity * Delivery
Well coated pipe
noise caused by welds

Good coating and well protected

welds

Reliability * Integrity * Delivery
Area void of CP

Reliability * Integrity * Delivery
Signals cont.

Large gains or losses over a single point = Rectifiers, Bonds, Shorts, Anodes

Large gains over several feet or meters = areas of poor coating or bare pipe

Small gains over longer areas are ideal and evidence of good coating and well distributed CP

Shallow positive (up left to right) slope across the zero line = mid point between sources and good CP coverage
Mid point between rectifiers

CP Mid point between two rectifiers
Pig direction

Current from rectifier behind
Current to rectifier ahead

Reliability * Integrity * Delivery
Agenda

- Review of Corrosion and CP of Pipelines
- Description of the CPCM concept
- Field trials and CPCM data
 - Benefits of CPCM
- Acknowledgments
- Questions & Discussion
Benefits of CP Current Monitoring via ILI

- Minimal personnel requirements
- Ease of evaluation
 - Only affecting currents are recorded
 - Good understanding of overall pipe condition
- 100% inspection
- Not dependent on ROW access
- Ease of which data is integrated with other ILI information
Data Integration

- Direct correlation with metal loss data makes data integration easy and meaningful.

- Aids in action planning
 - Is metal loss likely active or passive?
 - Is more CP needed to arrest corrosion?
 - Is shielding the most probable cause and recoating needed?
 - What action is needed to prevent future repairs?
Agenda

- Review of Corrosion and CP of Pipelines
- Description of the CPCM concept
- Field trials and CPCM data
- Benefits of CPCM
- *Acknowledgments*
- Questions & Discussion
Groups working on CPCM

Shell Oil Company
Kevin Scott – Shell Pipeline Co. L.P.
Mark Mateer – Shell Global Solutions
Paul Nichols – Shell Global Solutions
Bert Potts – Shell Global Solutions
Kola Fagbayi - Shell Global Solutions
Peyton Ross – Shell Pipeline Co. L.P.

Baker Hughes Pipeline Management Group
Steve Schroder
Paul Pirner - Proj. Mgt and Mech Eng
Vyacheslav Akulshyn - Mech Eng.
Mark Kalicki - Electrical Engineering
David Chung - Software

Reliability * Integrity * Delivery
Support and Matching Funding

US DOT OPS – Pipeline & Hazardous Material Safety Administration
Jim Merritt – R&D Program Manager
Peter Katchmar – Project technical manager

"This research was funded in part under the Department of Transportation, Research and Special Programs Administration’s Pipeline Safety Research and Development Program. The views and conclusions contained in this presentation are those of the authors and presenters and should not be interpreted as representing the official policies, either expressed or implied, of the Research and Special Programs Administration, or the U.S. Government."

Nov. 8th, 2007

Reliability * Integrity * Delivery
Patent Issued

United States Patent
Pots et al.

SYSTEM AND METHOD FOR MEASURING ELECTRIC CURRENT IN A PIPELINE

Inventors: Bert Pots, Houston, TX (US); Kola Fagbayi, Houston, TX (US); P. Kevin Scott, Harvey, LA (US); Mark W. Mateer, Katy, TX (US)

Assignee: Shell Oil Company, Houston, TX (US)

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0 235 478 B1 11/1993

Nov. 8th, 2007

Reliability * Integrity * Delivery
References

1. Peabody, A.W., Control of Pipeline Corrosion. (Houston, TX: NACE, 1967) p.19

Agenda

- Review of Corrosion and CP of Pipelines
- Description of the CPCM concept
- Field trials and CPCM data
- Benefits of CPCM
- Acknowledgments
- Questions & Discussion
Questions & Discussion

For Information contact:
Kevin Scott
Kevin.scott3@bakerhughes.com
1+281-230-7109

Reliability * Integrity * Delivery