InVista™ Inspection & LifeQuest™ Assessment

Integrated Solution Set Addressing Unpiggable and Difficult Pipelines
Topics

1. Introduction
2. InVista™ Inspection Solution
3. InVista™ Comparisons
4. LifeQuest™ Data Viewer
5. Conclusion
1. Introduction
2. InVista™ Inspection Solution
3. InVista™ Comparisons
4. LifeQuest™ Data Viewer
5. Conclusion
Quest Integrity Group Introduction

Quest Integrity Group is built on a foundation of leading edge science and technology that has innovated and shaped the process, pipeline and power industries for nearly 40 years.

As a private business with a global presence, we are responsive to your needs and focused on empowering your operating and maintenance decisions.

Headquartered in Seattle, Washington, our team includes more than 100 employees with more than 60 dedicated engineers & scientists.

Abu Dhabi • Brisbane • Calgary • Denver • Eindhoven • Houston • Seattle • Wellington
Some of Our Clients

- bp
- Chevron
- ConocoPhillips
- CHS
- Agip
- Nerefco
- Shell
- CITGO
- Marathon Oil Corporation
- elpaso
- Saudi Aramco
- ExxonMobil
- Esso
- Qatar Petroleum
- Suncor Energy
- Idemitsu Kosan
- Sasref
- Co-op
- SYncrude
- Flint Hills Resources
- Husky Energy
- Valero Energy Corporation
- Total
- COASTAL
- FLYING J
- Petro-Canada
- Tesoro
- Quest Integrity Group
Quest Integrity Group Pipeline Services

Providing Engineering Solutions

Asset Integrity is Our Core Business

- Asset Performance Optimization
- Computational Fluid Dynamics
- Condition Assessment
- Failure Investigation
- Field and Laboratory Services
- Materials Consulting, Research & Metallurgy
- Process Engineering
- Remnant Life Calculations
- Risk-Based Inspection
- Specialized NDT Solutions
- Structural Integrity/Life Assessment

Asset Longevity | Pipeline Performance

 QUEST INTEGRITY GROUP
Process • Pipeline • Power
Free Swimming UT Furnace Tube Inspection System – designed to fully navigate short radius - 1D serpentine coils in both radiant and convection sections
Targeting Unpiggable and Difficult Pipelines

Industry consensus estimates 30-40% of the world’s pipelines are classified as “unpiggable.”

At least another 10% of the piggable pipelines are so called “difficult” pipelines.

InVista™ Gives You Options Against conventional ILI tools in difficult or problematic inspections

Assessment Options

- Conventional Inline Inspection
- Hydrostatic Testing
- Direct Assessment
- InVista Inline Inspection
- Corrosion Damage Assessment Methods

Regulatory Compliance

World Pipelines

- Unpiggable
- Piggable
- Difficult
- Unpiggable
- Piggable
Solving Your Pipeline Inspection Challenges

Unpiggable Transportation & Distribution Pipelines

- Unpiggable Gathering & Delivery Pipelines
 - Bidirectional & collapsible to > 30% ID reductions
 - Bend radius to ≥ 1D
 - Back-to-back, mitres & tight >90° radius turns
 - Multi-diameter & dual-diameter capabilities
 - Minimal operating pressure requirements-down to 50psi
 - Applicable for both ferrous and non-ferrous materials
 - Inspection distances of >100 Miles

Piggable Mainline Pipelines

- Minimal operating pressure requirements-down to 50psi
- Applicable for both ferrous and non-ferrous materials
- Inspection distances of >100 Miles
Topics

1. Introduction

2. InVista™ Inspection Solution

3. InVista™ Comparisons

4. LifeQuest™ Data Viewer

5. Conclusion
InVista™ Ultrasonic Inline Inspection

InVista™ provides:

- High-fidelity ultrasonic inline inspection of unpiggable and difficult pipelines 3” (75mm) – 14” (355mm) in diameter

- Combined absolute wall loss and full geometry dimensions in a single pass

- Circumferential, longitudinal and ID/OD location of defects with referencing

- High-density direct measurement ultrasonic technology provides accurate, repeatable results measured to 0.005” (0.127mm) precision & 0.030” (0.762mm) remaining wall
InVista™ Advantages

InVista™ High-Fidelity Approach

- The term “high-fidelity” refers to the reproduction of sound and images with minimal distortion. Less distortion means superior, more accurate data.

- Signal distortion and other noise effects can reduce the ILI tool’s ability to fully discriminate and properly size pipeline flaws, thereby exposing you to increased risk.

- By design, InVista™ is not subject to the same noise effects associated with movement, pipeline disturbances and related wear challenges as conventional tools.

- Our advanced approach produces the highest quality images available in the industry today.
Safety and Flexibility

- Lightweight, self-contained, compact tools are handled easily; no lifting machinery required.
- Industry-leading passage, bend and bidirectional capabilities negotiate damaged or restricted pipe.

Reduced Operational Risk

- Unique design reduces wear effects and minimizes tool impacts compared with conventional ILI tools.
- Solutions oriented—analysis of all line data vs. individual boxed flaw locations.

Cost-Effectiveness

- Linear UT sizing minimizes verification digs and improves excavation and repair confidence.
- Permanent line modifications are not required.

Time Efficiency

- Efficient inspections minimize offline status.
- Onsite turnaround and rapid data analysis allow real-time operating decisions.
InVista™ Delivers

High-Fidelity Ultrasonic ILI Survey
• Onsite technician certified NDT L II or greater.
• Report immediate conditions as defined by you and provided within 7 days standard, customized final report provided with approximately 30 days standard.

Fitness-for-Service Engineering Assessment
• Provides remaining strength and maximum allowable operating pressure (MAOPr) for entire length of pipe vs. limited locations only.
• Follows API 579-1/ASME FFS-1 local thinning assessment methodology (accepted Level 2 methodology in ASME B31G-2009).

LifeQuest™ Visualization and Analysis Software
• High resolution 2D and 3D views of wall-thickness and inner profile for 100% of your data.
• Fully synchronized data display windows for rapid examination of your inspection results.
• Client configurable feature table compatible with GIS systems and exportable to Microsoft Excel®.
InVista™ Applications

- Bore restrictions, step changes, reduced port valves
- Cased crossings, pipe-in-pipe, vertical support members (VSM)
- Limited or missing launcher/receiver facilities
- Limited or unknown pipeline conditions
- Low flow or limited flow conditions
- Non-standard, bulging, oval, or offset pipe
- Offshore risers
- Significant wall-thickness variations
- Single entry/exit, line stoppage, plugged valves
- Unbarred tees and wyes
Louisiana USA

This 4” (100mm) line develops a leak and regulators mandate that the line be taken out of service and inspected for repair.

Adding to the operator’s sense of urgency was the fact the crude was selling around $130 per barrel.

“We need this pipeline back in service ASAP…”

InVista™ is Successful

Launcher
• Minimal working area
• Minimal trap length
• Unbarred 6” x 6” (150mm) tee at 6 o’clock

Receiver
• Minimal nominal pipe after valve
• Minimal trap length
• Line was not properly cleaned prior to ILI
Case Study 1 - Results

- 7 major corrosion and pitting flaws detected
- Client verified each flaw with alternate manual NDT method (i.e. pit gauge and/or manual ultrasonic scope)
- Repairs were made to all areas based upon InVista™ inspection results
California USA

Major client received an allotted budget to upgrade and make piggable all regulated assets.

After meeting with Quest this Operator realized it could inspect these lines for a small fraction of its entire budget.

“We do not want to spend the money to modify our pipelines unless it is absolutely needed…”

InVista™ is Successful

Pipeline Details

- Same location for both launch and receive using client-owned 14” barrel.
- Multi-diameter pipeline was easily inspected using two tools at client’s request:
 1. Ran 8” (200mm) tool to 6” (150mm) reducer and back out.
 2. Ran 6” tool through 8” line, through 6” and back out.
- Inspected over 1 mile of pipe below city streets with limited access.
- No prior inspection due to tight bends, unbarred tee and plug valves
- Legacy line—no original drawings
Case Study 2 - Results

External flaw at 688 feet
• Length = 1.0 in (25.4mm)
• Width = 0.25 in (6mm)
• Depth = 0.122 in (3.1mm)
• 39% wall loss

RSF = 0.699
MAOPr = 1001 psi (69.03 bar)
B31G = 1415.3 (97.6 bar)

1. Verified with prove-up dig
2. Location within one inch
3. Wall loss within one percent
Alaska USA

Major client had problems with conventional ILI tools becoming stuck repeatedly and needed a solution.

Compounding issues: these pipelines contained cased crossings and there were minimal traps with limited space availability.

“We cannot risk getting another pig stuck because it will shut down our entire operation…”

InVista™ is Successful

Pipeline Details

- Two 6” (150mm) produced water pipelines tied together for approximately 7 miles
- Pipeline pressure 1500 PSI (103.4bar) and 150 degrees
- No prior inspection due to limited trap lengths--No modifications required for InVista
- Launcher reduced from 12” (305mm) to 10” (250mm) to 8” (200mm) then to 6” (150mm) nominal in one instance
- Insulated pipe could normally be inspected with manual UT, but this was >100 ft (33M) from the ground.
Severe corrosion found and MAOP reduced—
Fitness-for-Service delivered in < 24 hours
Topics

1. Introduction
2. InVista™ Inspection Solution
3. InVista™ Comparisons
4. LifeQuest™ Data Viewer
5. Conclusion
Historical Assessment Methods

Conventional ILI
(includes tethered & BIDI)

- Conventional ILI tools are more demanding on operator and less capable than InVista™ single tool packaged solution.
- MFL is subject to secondary influences which can mask important components of the signal affecting detection and sizing of defects.

Direct Assessment
(includes guided wave & localized UT)

- Direct Assessment is subjective and only incorporates snapshots of your asset.
- Compare time required for capturing and assimilating field data and decisions based on presumptions against running a tool in 1 day with quantitative report prepared by specialists delivered in about 30 days.

Hydrostatic Testing

- Hydrostatic testing does not deliver value—bursting pipe and increasing failure risk for other locations; does not properly mitigate risk, improve pipeline integrity, or otherwise provide actionable information.
- Operational constraints and limited operator assurance is not sufficient trade-off for reliable, accurate direct pipeline assessment.
Conventional ILI Comparison

<table>
<thead>
<tr>
<th>Area of Interest</th>
<th>Traditional MFL</th>
<th>Traditional UTWM</th>
<th>InVista™</th>
<th>Operator Benefits Because:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite Handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool Transport</td>
<td>Heavy & Hazardous (magnets)</td>
<td>Heavy</td>
<td>Light / Safe</td>
<td>Quest incorporates air travel as our primary logistical option giving you the most cost-effective mobilization/demobilization method.</td>
</tr>
<tr>
<td>Lifting Equipment</td>
<td>Heavy Equipment Required</td>
<td>Heavy Equipment Required</td>
<td>All Tools < 100 lbs</td>
<td>Transport between work areas or facilities is simplified as no lifting equipment or associated personnel are required.</td>
</tr>
<tr>
<td>Tool Length</td>
<td>Start at 6 feet</td>
<td>Start at 6 feet</td>
<td>All Tools < 6 feet</td>
<td>Small working spaces are sufficient and InVista easily accommodates short traps-all we need is a pipe opening large enough to insert the tool.</td>
</tr>
<tr>
<td>Standard Overhaul</td>
<td>day(s)</td>
<td>day(s)</td>
<td>hours</td>
<td>Rapid onsite turnaround is standard--our unique design minimizes areas that can become damaged by pipe wall, debris, and/or wear.</td>
</tr>
<tr>
<td>Tool Passage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movement</td>
<td>Regulated Pressure >350 psi</td>
<td>Regulated Pressure >350 psi</td>
<td>Near-neutral buoyancy</td>
<td>InVista requires only a 10-15 psi differential pressure and very low line pressure requirement (50 psi).</td>
</tr>
<tr>
<td>Direction</td>
<td>Downstream</td>
<td>Downstream</td>
<td>BIDI including odometer</td>
<td>Bidirectional capabilities minimize pipeline modifications.</td>
</tr>
<tr>
<td>Collapsibility</td>
<td>15-25%</td>
<td>15-30%</td>
<td>50-60%</td>
<td>Heavy ID restrictions or passage issues are mitigated.</td>
</tr>
<tr>
<td>Propulsion & Centralization</td>
<td>Cups / Disks</td>
<td>Cups / Disks</td>
<td>Brushes</td>
<td>Brushes offer better wear, less jeopardy from pipeline effects, and capabilities for maneuvering in oval and offset pipe.</td>
</tr>
<tr>
<td>Sensor Lift-Off</td>
<td>Assembly Rides Pipe Wall</td>
<td>Assembly Rides Pipe Wall</td>
<td>Unaffected</td>
<td>InVista sensors do not ride along the pipewall and therefore are not affected by disturbances, welds, mechanical damage, etc.</td>
</tr>
<tr>
<td>Multi Wall</td>
<td>Available</td>
<td>Available</td>
<td>Standard</td>
<td>Same tool can be calibrated to nominal OD based on specific needs.</td>
</tr>
<tr>
<td>Bends</td>
<td>1.5</td>
<td>1.5</td>
<td>1.0</td>
<td>Tightest bend capability on the market--180 degree back-to-back capability.</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Indirect (Qualitative)</td>
<td>Direct (Quantitative)</td>
<td>Direct (Quantitative)</td>
<td>Repeatable, objective, faster data processing is a standard UT attribute.</td>
</tr>
<tr>
<td>Feature Base</td>
<td>Nominal W/T</td>
<td>Exact (Actual)</td>
<td>Exact (Actual)</td>
<td>UT data is ideally suited for integrity assessment, FFP studies, and of particular use in pipeline up-rating process.</td>
</tr>
<tr>
<td>Combination Tool</td>
<td>Available</td>
<td>Available</td>
<td>Standard</td>
<td>InVista is the most compact combined metal-loss and deformation tool on the market, providing the most critical information in a single tool pass.</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 10% of w/t</td>
<td>± 0.005"</td>
<td>± 0.005"</td>
<td>Better Probability of Detection (POD) and sizing provide precise feature calls.</td>
</tr>
<tr>
<td>Confidence</td>
<td>80%</td>
<td>95%</td>
<td>95%</td>
<td>Higher confidence levels provide considerable savings by minimizing required digs and extending repair programs over longer time periods.</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Reporting</td>
<td>60 day final</td>
<td>60 day final</td>
<td>30 day final</td>
<td>Faster data assessment delivers faster results.</td>
</tr>
<tr>
<td>Data Verification</td>
<td>May require calibration dig</td>
<td>Not Required</td>
<td>Not Required</td>
<td>UT stores actual w/t value for every location within the pipe.</td>
</tr>
<tr>
<td>Repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature Calls</td>
<td>Subjective</td>
<td>Objective</td>
<td>Objective</td>
<td>UT data measures pipeline characteristics directly and with better tolerance when compared with MFL indirect approach.</td>
</tr>
<tr>
<td>Demagnetization</td>
<td>Likely</td>
<td>Not Required</td>
<td>Not Required</td>
<td>MFL tools permanently magnetize the pipe and this can complicate welding during repair work.</td>
</tr>
</tbody>
</table>

| Standard | Best Available |
Consequence of Tolerance

The magnitude of your rehabilitation and repair work is greatly affected by tool tolerances. “The best tolerances result in the least repairs, which means money saved in the repair program.”

Choosing to run tools with better tolerances increases your efficiencies and decreases waste, allowing more effective decision-making.

UT Inspection → higher return on investment because of accuracy driven efficiencies.

The higher accuracy and confidence that InVista™ offers increases your profitability, maximizes limited resources, and results in more effective risk mitigation when compared with MFL tools.

How much unnecessary planning, man hours, resource scheduling, and/or pressure down-rating can you and your company afford?
Topics

1. Introduction
2. InVista™ Inspection Solution
3. InVista™ Comparisons
4. LifeQuest™ Data Viewer
5. Conclusion
LifeQuest™ Data Viewer

Level 2 API 579 Fitness-for-Service

• Section 5 Level 2 API 579 Fitness-for-Service assessment performed on 100% of inspection data
• Remaining strength factor (RSF) and reduced maximum allowable operating pressure (MAOPr) calculated along entire length of pipeline
• Calculations summarized for each section of pipe
• Double-clicking on a row will cause the view windows to interactively pan to that position
Assessing Your Entire Asset

No Limitations as with Manual Flaw Boxing

- Obtain thickness data from inline inspection
- Compute RSF at short segments
- Rank corrosion damage over various segments
LifeQuest™ Advanced Visualization

Converts ILI data sets into synchronized 2D and 3D views

- Better defect characterization
- Simultaneous visualization of multiple data values
- More accurate defect growth models
- Visualization allows operators to improve mitigation
- Advanced analysis improves Fitness-for-Service assessment
A 5.5” (140mm) dent, 0.117” (4.5mm) depth
2% Topside Dent

- Inspection of 12" (305mm) petroleum line under streets in a major metropolitan area
- Over 100 dents detected in 3 mile section
- Radius plots of worst dent shown here (~ 2%)
- Dent is located in top half of pipe and thus is a mandatory repair
External Corrosion

- Inspection of 8” (200mm) wharf acid line

- Remaining wall thickness less than 0.100” (2.5mm).

- Pipe was rubbing on a support.

- Client removed section and verified damage.
Representative area of widespread corrosion - over 80% wall loss shown:
Welded Patch with Corrosion

Welded patch with clear corrosion indication
Road Crossing

- Inspection of 8” (200mm) wharf acid line
- $T_{mm} = 0.163$ in. (4.14mm) (33% wall loss)
- Corrosion is located under road crossing.
- Satisfies API 579 Fitness-for-Service criteria for continued operation at current operating pressure.
New Pipe Transition

New pipe to severe corrosion transition
Excessive Weld Penetration & Erosion

Localized erosion following the weld

2D Contour Wall Thickness (inch)
Special Weld Penetration Analysis

GW #1
0.16" (4.1mm) weld protrusion

GW #6
0.15" (3.8mm) weld protrusion

GW #282
0.09" (2.3mm) weld protrusion

GW #49
0.09" (2.3mm) weld protrusion
Pipeline supports

[Image of pipeline support with chalk markings: "LUB 251:10 LEAK"]
Pipeline supports
Topics

1. Introduction
2. InVista™ Inspection Solution
3. InVista™ Comparisons
4. LifeQuest™ Data Viewer
5. Conclusion
Collaborative Engineering Solutions

Life Cycle Management

- Ongoing Monitoring Maintenance
- Risk Reassessment
- Consequence Modeling
- FEA Modeling Level 3
- API-579 Level 1&2
- Enhanced Flaw Characterization

Pipeline Integrity

- Compliance & Codes
- Risk Identification
- Direct Assessment
- Inline Inspection
- Data Analysis Integration

Risk Based Inspection

Fitness-For-Service

Condition Assessment
In Summary:

1. InVista™ ultrasonic inline inspection overcomes challenges associated with pipelines that until now have limited the capabilities of conventional pigging systems.

2. LifeQuest™ data delivers more actionable and timely information that is as reliable and regulatory credible when compared to today’s cumbersome, conventional analytical approach.

3. Quest Integrity Group offers an unmatched global pool of engineering talent, cutting-edge assessment technologies, and a culture of client responsiveness, understanding and professionalism.
Thank you for your attention. Enjoy the rest of the PPSA event.