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Introduction

* In-Line Inspection of gas pipelines is more
demanding, in particular for extreme (low/high)
flow and pressure conditions

« Compressible nature of the medium gas requires
special tool configuration i.e. low friction sealing
elements or intelligent bypass valves

« Some threats are more frequent in gas than in
liquid lines, e.qg. Stress Corrosion Cracking
(SCC) or Top of the Line Corrosion (TOL)

« Absence of liquids require new Ultrasonic
Testing methods to characterize crack related
threats.
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Controlling the Inspection Speed
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'Controlling the Inspection Speed E
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'Controlling the Inspection Speed

e ILI Inspection of a 56”
. Gas-Pipeline
M « 1.5D; Mitered Bends
l » High Resolution MFL
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Controlling the Tool Dynamics

* ILI Inspection of a 26”

— Tool w/o Speed Control Gas_ P| pe"ne
6 —— Active Speed Control
* Two runs were
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Reduced Pressure and Flow Conditions E
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08” High-Res MFL ILI

Tool — Low Pressure

Low Pressure Kit
* Pull-Unit

* Low Friction Setup

* Wheel Design

Magnet Unit

* Reduction of Friction
by 65 %

* Improved Start/Stop

Low Pressure Tool

* Magnet Unit on Wheels
* E-Box Design

« U-Joint Design
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Low Pressure Example
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\Low Flow Condition

Special Drive Unit

Just Seal Principle

* Minimum Bypass

* Minimum Friction

« Optimized Centralization
* Optimized Load Capacity




Content

 In-Line Inspection — Pipe Anomalies
Dents and Pipeline Geometry



Combined ILI-Technologies

high resolution geometry
inspection (Geo) XYZ Geo

pipeline route mapping
(XY2)

corrosion mapping with
magnetic flux leakage
(MFL)

mapping of shallow
Internal corrosion (SIC)
using eddy current
technology




'Dents and Pipe Geometry
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Dents and Pipe Geometry
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Out of Roundness Correlates with Longseam Position
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Dents and Pipe Geometry E

Accurate Dent Characterization - Combined Technology
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Dents and Pipe Geometry

Geometry Tool measurement
of check valve.

Checked immediately and
approved for MFL run.




Strain and Stress

(03 NONMANDATORY APPENDIX R
ESTIMATING STRAIN IN DENTS

R1 STRAIN

Strain in dents may be estimated using data from
deformation in-line inspection (I1I) tools or from direct
measurement of the deformation contour. Direct mea-
surement techniques may consist of any method capable
ol describing the depth and shape terms needed to esti-
mate strain. The strain estimating techniques may differ
depending on the type of data available. Interpolation or
other mathematical techniques may be used to develop
surface contour information from ILI or direct measure-
ment data. Although a method for estimating strain is
described herein, it is not intended to preclude the use
of other strain estimating techniques. See also Fig. R1.

R2 ESTIMATING STRAIN

Ry is the initial pipe surface radius, equal to ' the
nominal pipe OD. Determine the indented OD surface
racdius of curvature, Ry in a transverse plane through
the dent. The dent may only partially flatten the pipe
such that the curvature of the pipe surface in the trans-
verse plane is inthe same direction as the original surface
curvature, in which case R is a positive quantity. If the
dent is re-entrant, meaning the curvature of the pipe
surface in the transverse plane is actually reversed, R,

is a negative quantity. Determine the radius of curvature,
R, in a longitudinal plane through the dent. The term
R; as used herein will generally always be a negative
quantity. Other dimensional terms are: the wall thick-
ness, f; the dent depth, d; and the dent length, I..

(7) Calculate the bending strain in the circumferential
direction as

g1 = 1 (1/Ry — 1/Ry)

Straln » the bending strain in the longitudinal

€1 =1 f/Rz

(c) Calculate the extensional strain ir R ad I us

direction as

£ = (1/:2](‘1/[')2

(d) Calculate the strain on the inside pipe surface as
g = [g1° = & (&2 + 83) + (80 + &) ]2

REMARK FO} r:’we outside pipe surface as

& = &

Ula Not CorreCt a2

ASME Code, B31.8-2003, Appendix R, page 158



Strain and Stress

€ = Strain = displacement
r =radius = curvature

—



Strain and Stress

ILI Geometry Measurement and Analysis



Strain and Stress

ILI Geometry Measurement and Analysis



Strain and Stress

ILI Geometry Measurement and Analysis

1 local membrane strain in dent



Absolute strain

ILI Geometry Measurement and Analysis

_ 2 2

Bending strain  + membrane strain = total strain




Results and Reporting

Data Arrays
« Strain
e Curvature Dent Parameter
« Geometry * Length
« Width
» Depth

* max Strain
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Corrosion Mapping

XYZ Geo

MFL

Corrosion Mapping with MFL

Corrosion Mapping with
Shallow Internal Corrosion Sensor




Measurement Principle E
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Measurement Principle
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SIC Scan of TOL cut-out

Photograph SIC Data
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Measurement Principle
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Ultrasound is generated inside the pipeline itself

No liquid coupling -



Key Advantages of High Resolution EMAT Tool E

Sensitive Pixel

rack
Sender ) Crac
4——‘ >
TR D U— "
———— >
Receiver ' Receiver
.;., 9\;‘ Echo Signal Transmission Signal

s § Crack Detection Coating Disbondment

Detection



\ Crack Detection
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Field Data

Coating Feature in Gas Line:
Localized coating disbondment

Integral of Transmission Signal
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Field Data
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» field applied tape wrap
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Conclusion

« Today, basically all critical anomalies can be
identified and characterized by the various inspection
technologies also for gas pipelines

« The combination of different inspection technologies
allows a more throughout assessment of the pipeline
Integrity

« The operational requirements of an individual pipeline
can be addressed to a wide extend. Nowadays former
non-piggable pipelines can be inspected

 However, design of vehicles providing an acceptable
environment for the measurement under real
operational condition is still posing a challenge for the
future



Thank You for joining the presentation...

EMPOWERED BY TECHNOLOGY



