Inspection of unusual Pipe Types with Eddy Current Technologies

K. Reber, Innospection Germany GmbH, Stutensee, Germany
A. Bönisch, Innospection Ltd., Aberdeen, UK

Presented at the PPSA Seminar on 17th of November 2010
Marcliffe Hotel, Pitfodels, Aberdeen, UK
Innospection – Company Introduction

Expertise: Providing Advanced Electromagnetic Inspection Services & Application Solutions

Offices: Aberdeen (Head Office), Rugby, Abu Dhabi, Al-Khobar, Perth, Melbourne, Stutensee (R&D – Germany)

Activities: Tube Inspection (HE & Boiler) Pipeline Inspection Storage Tank Inspection Pressure Vessel Inspection Subsea Inspection
 • Caissons
 • Risers
 • Structural Legs
Flexible Riser Inspection
Advanced crack detection
R&D for Inspection Solutions
Inspection of “regular” pipe

- Regular pipe type is
 - Ferritic steel
 - No or thin coating
 - One type of steel material
 - Single layer

- Existing pigging inspection technologies
 - Ultrasonic Pulse Echo methods
 - Magnetic Flux leakage methods
What pipe is typical and what is unusual?

Examples of inspection tasks, for which regular inspection technologies fail:

- **Pipe with coating thickness in the range of 40 mm**
- **High steel wall thickness (MFL fails)**
- **Pipe cladded with a different metallic layer (internal or external)**
- **Non typical materials, such as Stainless Steel or Duplex**
- **Non-solid pipe material made from several layers of different material like flexible pipe**
- **Operational restricted : Riser Sections – particular Gas Risers**
What can eddy current do?

“Traditional” Eddy current

- Inspection of the near side only, i.e. for cracking or as a lift-off measure
- Traditional application in weld inspection, heat exchanger tube inspection, material sorting etc.
- Cannot inspect the volume of thick ferritic steel structures

Alterations of classic eddy current to circumvent these Problems

- Magnetically biased Eddy Current (SLOFEC™)
- Pulsed Eddy Current (PEC)
- Remote Field Eddy Current (RFET)
Magnetically Biased Eddy Current (SLOFEC™)

Magnetic Circuit

Eddy Current Sensors

Eddy Current Probe Field

Test Piece

Magnetic Field Lines

Defect

Increased Magnetic Flux Level

PPSA Seminar, Aberdeen November 17th 2010
Magnetically Biased Eddy Current (SLOFEC™) typical applications

Storage Tank Scanning Capabilities
- Wall Thickness range: up to 30mm
- Inspecting trough coating: up to 10mm

Pipe & Vessel Scanning Capabilities
- Wall Thickness range: up to 30mm
- Inspecting trough coating: up to 7mm

Riser & Caisson Scanning Capabilities
- Wall Thickness range: up to 30mm
- Inspecting trough coating: up to 15mm
The idea of pulsed eddy current

- **The higher the frequency the lower the penetration depth**
- **High frequency response probes the surface (sensitive to lift-off)**
- **Low frequency response probes the interior (wall thickness)**
- **A pulse contains a large frequency spectrum**
- **The response can be split up into different frequency content**
Pulsed Eddy Current Testing

Graph by: Paul CROUZEN and Ian MUNNS, Shell Global Solutions International, Amsterdam

PPSA Seminar, Aberdeen November 17th 2010

Diffusion of Eddy Currents in steel

PEC signal

Time [ms]

Wall loss
Remote Field Eddy Current

Current Application mainly for Testing of small tubing like heat exchanger tubes

- *Due to low frequency inspection not possible at high speeds*
- *Sensitive to wall thickness thinning*
- *Evaluation of the phase of the signal*
- *Rather insensitive to lift-off*
Principle of Remote Field Eddy Current

- **Exciter Coil generates magnetic field at low frequencies**
- **Pick-up coil is placed sufficiently far away**
- **Does not pick up directly coupled signal**
- **Signal is coupled through pipe wall and thus depends on wall thickness**
- **Phase shift directly converted to wall loss**
- **Sensitive to internal and external defects**
Coils – Tailor made solutions

- *The key to eddy current testing is the coil.*
- *The Variety of coil types is vast*
- *Every coil needs to be tailored to its application*

1. **Determine Coil size depending on defect size and lift-off**
2. **Determine the frequency for testing**
3. **Calculate Ampere-turns to get Impedance**
4. **Produce coil**
Example Solutions

Monel Cladded Riser Inspection

PPSA Seminar, Aberdeen November 17th 2010
Example Solutions

Monel Cladded Riser Inspection

Detecting Defects underneath Monel clad welds

Defect before cladding

axial weld

PPSA Seminar, Aberdeen November 17th 2010
Example Solutions
Cladded pipe in pipe

Test pipe with artificial defects

- 3 mm CRA cladding
- 15 mm wall thickness
- Pipe in pipe system

PPSA Seminar, Aberdeen November 17th 2010
Example Solutions

Cladded pipe in pipe
Example Solutions

Cladded pipe in pipe - Signals from test pipe (single pipe section)

PPSA Seminar, Aberdeen November 17th 2010
Flexible Riser Pipe

Flexible riser pipe is pipe made of several layer of steel armour. The armoured layers are wound in a helical form, with different layers wound in different directions.

The problem

• Inspect through a thick coating
• Inspect all layers, i.e. inspect layers beneath other ferritic conductive layers.

PPSA Seminar, Aberdeen November 17th 2010
Flexible Riser Pipe
The task - The solution

• Detect defects like snapped wires and metal loss in all layers of the flexible pipe

• Need a magnetisation unit that can adapt the magnetisation level
• The magnetisation direction needs to be made dependent on the direction of winding
• The tool needs to be light enough to be deployed sub-sea

First Step
• Verify the inspection solution
Flexible Riser Pipe Testing
Flexible Riser Pipe
Development of a suitable magnetisation unit & sensor array unit

Patented
Flexible Riser Pipe
Operational Arrangements

Full 360 coverage
• Axial movement only
• Higher weight—Requires a work-class ROV for deployment or lowered on steel rope
• Faster scanning. Suitable for long pipe

Partial coverage with circumferential scanning
• Movement in two directions
• Lower weight. Light ROV is sufficient
• Especially for defined areas
Flexible Riser Pipe
Lighter Option for ROV deployment

• Scanning up/down in several steps to achieve full coverage
• Light for ROV deployment

In cooperation with

PPSA Seminar, Aberdeen November 17th 2010
Eddy Current technique solutions have the potential to fill pipeline inspection gaps.