STATS GROUP
Process & Pipeline Integrity Solutions

EPRIS (Emergency Pipeline Repair Isolation System)
Isolation Technology Developed to Facilitate Repair of Unpiggable Defects

Dale Millward
Director - EPRS & Subsea Services
Pipeline Damage Examples and Consequences

Preparedness Options and Benefits

Recent advancements in Isolation Technology – unpiggable pipeline solutions

EPRIS case study

Short Animation

Q&A
Despite good pipeline design and integrity management schemes pipelines can and do get damaged and need to be repaired.

Large Diameter Incidents in last 5 years: (excl. GoM)

- 36” CATS trunk line
- 30” Kvitebjorn line
- 2 off 24” North Africa lines
- 30” ADMA Oil export line
- 20” and 26” Trans-Med. lines

NOTE: At least 12months from incident to resumed operation (except CATS)

Damage Mechanisms: Dragged anchor / landslide / iceberg / fatigue / stress cracking...

Damaged section may be unpiggable (Buckles / Dents) with or without line rupture.
Following inspection and defect assessment, repair may require replacement of a section of pipeline.

Without double block isolation; need to flood and depressurise line to remove the damaged section and install a new section.
EMERGENCY PIPELINE REPAIR SYSTEM INVESTMENT BENEFITS – Significant time saving

Depending on availability of repair equipment the time to return to service could be between 100 days to more than 1 year.
Emergency Pipeline Repair
Out of service time

Without isolation

Incident

Inspect Assess

Decommission

Repair

Production Resumed

Re-commission

With isolation

Incident

Inspect Assess

Install Isolation

Repair

Remove isolation

Production Resumed
Emergency Pipeline Repair

Isolation - Benefits

Safer worksite / Reduced inventory losses
Minimal discharge to environment

Prevents seawater ingress – Dewatering not required
Time to repair reduced

Pipeline’s “Out of Service” period is minimised
Double Block Isolation tools
For unpiggable pipeline defects

DNV·GL TYPE APPROVAL CERTIFICATE for Pipeline Isolation Plugs

Type Designations BISEP™ and Tecno Plug™

Complying with DNV-OS-F101, DNV-RP-F113 & ASME VIII div. 2
Secondary Seal Integrity Test

Pressure locked in the annulus
Pressure behind vented,

Secondary seal tested with:
Full differential pressure in correct direction
Primary Seal Integrity Test

Pipeline pressure in front
Annulus pressure vented

Primary seal tested with:
Full differential pressure in correct direction
In some cases, pipeline may not have been piggable even before it was damaged due to lack of pig launchers or receivers or previous dents.

A BISEP™ may also be required to allow installation of temporary or permanent launchers and receivers so that a piggable isolation tool can be deployed into the pipeline.
• Pipeline differential pressure across BISEP™ activates seals independent of hydraulics
• Hydraulic set pressure ensure two independent activation mechanisms
• Seal support head bears on two solid clevis arms, each one capable of taking the full load (100% contingency)
• Clevis arms are axially retained by the hot tap penetration and fitting
With the isolation tools installed and tested.

Cut out damaged section

Install replacement section.

Bypass option for continuous production
Midline DBB Isolation With Bypass
Repaired Without Stopping Production
Unpiggable Defect Repair
Hot Tap Penetrations Removed
Case Study – EPRIS for client in Qatar

Tecno Plugs Developed to be pigged towards an unpiggable line defect – from both sides or to pass through a dent (less than 10%).

Isolation Plugs for 32” 34” 38” Pipelines (Two Plugs for each line)
First plug is deployed from one end of the pipeline.
Subsea Control and Monitoring

- Topside winch drum with subsea antenna cable
- Remote Communication Console
- Topside acoustic modem deck box
- Down line option
- Acoustic option
- Subsea cable down line
- Subsea ELF Antenna Thru-Pipe wall communication (oil filled pressure compensated)
- Acoustic Thru-Water Link
Before reaching the line defect the plug is partially set (locks only)

Through port vent opened.
Opening the through port allows the second plug to be pigged from the other end of the pipeline - **towards** the first (partially set) plug.
As the second plug is pigged, the product between the plugs passes through the partially set first plug.
Once both plugs are at the desired set location, the second plug can be fully set (locks and seals).
The first plug is then fully set (seals compressed onto pipe wall)
The damaged section of pipeline is now isolated.

Double Block Isolation of both plugs is proved.
Lightweight Hot-tap Clamps used to flush and vent between the plugs.
The isolated area is flushed to remove hydrocarbons
The Isolated section is then fully vented to (subsea) ambient.
Pressure between the seals is monitored to prove the Secondary seal.

Secondary seal tested with full pressure in the correct direction.
Annulus between the seals is vented to produce a zero energy zone.

Pressure build up test of annulus proves primary seal isolation.

Primary seal is tested with full pressure in correct direction.
Pipeline repair work is carried out.

Line is not flooded

Inventory is not lost.

Environment is not contaminated
New section of pipe installed

Using mechanical connectors or hyperbaric weld.
Leak test the repair

Equalise pressure and unset both plugs
Pig both plugs back to one end of the pipeline using production flow.

Remove from receiver
Thank You For Your Attention

Q&A

For more information & contact details visit
www.statsgroup.com