

PPSA Seminar

Aberdeen 8th November 2017 Paul Clayton – Business Development Manager

making simple **smart**

i2i Pipelines – the company

- Formed in 2015, links to Manchester University.
- Currently 20 employees, based at the Manchester Science Park & Houston, TX.
- Sensor Technology Company providing Big Data on pipelines via machine learning and digital IOT.
- Core Skills in providing fast solutions for non-disruptive inspection in complex pipelines.

• Our Vision:

"To simplify pipeline inspection so it becomes a low risk, low cost and regular non-disruptive activity, leading to enhanced integrity management that benefits from big data analytics and digital technologies"

Our Objectives:

- To build and deploy simple operational tools with smart sensors.
- To make smart pigging a non-specialist activity, performed by the operator.
- To develop machine learning for rapid data analysis and automated reporting.
- To collect big data (including flow assurance and integrity) to allow predictive maintenance strategies.

Cleaning pigs are run frequently but collect no data.

- Little disruption to Ops.
- Low cost.Low risk.

2 extremes when collecting data

Intelligent Pigs are complex, disruptive and too expensive to be run frequently.

- More risk of getting stuck.
- Require specialist personnel.
- Inconvenience gauging, cleaning & handling equipment.
- Operating windows, scheduling.

Result:

- Costs are high and inspection is infrequent.
- Less data to monitor or trend anomalies (ILI intervals can 5-15yrs).
- Sometimes no data on critical assets (small diameter or "unpiggable").

Way Forward:

- Simple Smart tools.
- Combine the benefits of simple design with an inspection capability.
- Inspection without disruption.
- No specialist personnel.

I The Inspection Technology

- Based on Electromagnetic Inspection technology:
 - PCBs have a generating coil and receivers.
 - Wired together into any size array.
 - Different sizes allow different levels of stand off.
 - Sensitive to internal defects only.
- Benefits:
 - Can operate at a large stand off and are not sensitive to lift off.
 - Can work in any medium including uncleaned pipe.
 - Less sensitive to speed variations.
 - Very sensitive to pits, internal metal loss and open circumferential cracking.

Case study 1 – a world first ?

• The Challenge:

- Inspect 2 x 10" pipelines, platform FPSO.
- 4.3Km and 2.5Km.
- Multiphase.
- >75°C.
- WT: 12.7mm.
- Pipe In Pipe.
- Flexible riser.
- Constant operational pig damage.
- Receive in a pigging valve.
- The Solution:
 - SmartFoam[™]

Client routine pig prior to launch

Client routine pig at receive

Client pig c/w impression on nose

Design of pig catcher in valve cavity

Impression on SIDE of one client pig

Impression on REAR of separate client pig

- Produge a clight reviewed a suggestions made or mitigate tumbling.
- Less pointed nose.
- Ballast the pigs with weights to simulate the on board PV, then proceed to live run.
- Full review of receive process in pigging valve.
- Recommend trials, client offered use of their test loop...

- In dry dock, Tianjin, China
- Multiple diameters
- Multi product
- 700m loop
- Bends / expansion loops /multi dia
- Ability to add wax

Defect spool in test rig for blind test

- Multiple internal defects to POF category
- Client QA'd
- Test conducted blind
- Included inspecting through wax

Test results – client defect spools

- Result: 97% POD
- L, D, W within spec.
- Design and capability APPROVED

Pilot tool at receive (line 1) – tell tale marks on front

NUMBER OF SENSORS	13
SENSOR TO PIPE WALL STAND OFF	8mm
MAXIMUM SENSOR STAND OFF	25mm
MINIMUM DETECTABLE ANOMALY	2mm DEEP x 5mm DIAMETER AT MAX 25mm
MINIMUM CIRCUMFERENTIAL SIZING	≤ 46mm
MINIMUM LONGITUDINAL SIZING	≤ 41mm
SCAN RESOLUTION	1.5mm at 2m/s
MAX RUN TIME	6 HOURS
ADDITIONAL FEATURES	
PRESSURE SENSOR	NO
TEMPERATURE SENSOR	NO
XYZ MAPPING	YES
OPERATING RANGES	11. 12
MAXIMUM PRESSURE	140 bar (2000 psi)
MAXIMUM TEMPERATURE RATING	90°C (194°F)
MAXIMUM SPEED	6m/s
MINIMUM BEND RADIUS	1.5D BEND

Effective pig receiver length

STEP 7

STEP 10

Hartmann valve has an interlock that is integrated on the side of the pigging ball valve that is locked and secured through a bayonet system.

Pipeline Data

10/11/2017

- First ever successful intelligent pig run in to an FPSO's turret based pig
 - valve receiver ?
- Data gathered over entire pipeline length in first pipeline with a simple ILI tool based on a foam pig with embedded sensors.
- Report delivered.
- Interesting and unexpected data from the flexible riser.

- The Challenge:
 - Inspect 12" x 50Km pipeline.
 - Platform to shore.
 - Badly dented down to 253mm.
 - Short notice due to contracted ILI vendor withdrawing.

The Solution

■ Pioneer[™]

ILI vendor Calliper reported very large dent

Local technicians trained to commission and load tool in less than 1 day !

Very little debris recovered in front of tool

- Cost effective solutions exist for the most challenging inspection needs.
- If you can safely run a cleaner, you can inspect the line.
- Keep it simple, make it Smart.

