Driving Pipeline Decommissioning Best Practice Through Experiential Learning

Scott MacKenzie (Technical Advisor) & Robert Davidson (Technical Advisor) – Halliburton, Pipeline and Process Services
Safety Moment: Cave Creek Disaster, New Zealand

What Happened?
- 28 April 1995
- Paparoa National Park, New Zealand
- Scenic viewing platform collapsed
- Platform fell approximately 40 m into chasm
- 14 people died

Why?
- Platform not designed or approved by a qualified engineer
- No one involved in its construction was a qualified engineer
- Nails were used to secure the platform instead of bolts because an appropriate drill had not been taken to the building site
- Steps to the platform, which were supposed to act as a counterweight, had not been properly attached
- No building consents were obtained
- Platform not listed on any inspection register
- Warning sign for the platform, suggesting a maximum limit of five people, had been ordered but was never installed at the site
Safety Moment: Cave Creek Disaster, New Zealand

- Lessons to be learned
 - Follow correct design and construction processes
 - Seek expert advice where required
 - Use the correct tools and materials for the job
 - Manage any changes to the design or job execution
 - Be aware of design limitations and communicate them
Introduction: Decommissioning Scope of Work

- UK Southern North Sea

- Three major gas fields
 - Gas and associated methanol lines

- Large infield infrastructure
 - 84 lines: 3 to 20 in.
 - 50m to 43 km

- Export pipelines
 - 5 lines: 16 to 36 in. with associated MeOH lines
 - 10.9 to 188 km
Challenges

- Pipelines still contained:
 - Hydrocarbon gas
 - Condensate
 - Water
 - Methanol
 - Sludge (causing blockages in some lines)
 - NORM contaminated debris
- Some lines never pigged since commissioning
- Other lines not pigged for decades
- Lines with stuck spheres
- Some lines badly corroded
Challenges

- Multiple stakeholders
- Platform limitations (NUIs, laydown areas, craneage, etc.)
- Aging infrastructure
- SIMOPS for P&A and decom
- No established industry standards
Objectives

▪ Remove line inventory

▪ Reduce hydrocarbon content to less than 30 mg/l

▪ Leave lines flooded with seawater

▪ Inject displaced fluid and solids down nominated disposal wells
Operations

- 3 distinct projects for the primary client: 1 for each field
- 5-year duration
- 89 pipelines: 1970 km
- 35 worksites: platforms and vessels
- Additional line (detail not included here)
 - Taking total length to more than 2000 km
- 7 scenarios
 - Satellite to satellite
 - Topsides to topsides
 - Topsides to subsea
 - Subsea to topsides
 - Topsides to shore
 - Topsides to shore to topsides
 - Onshore to onshore
Typical Equipment Rig Up: Satellite Platform to Hub Platform Operation
26” and 36” Gas Export Trunk Line Flushing 307km Loop

Onshore Gas Plant
Temporary crossover
Hose, Filtration & Booster Pump Spread

Offshore Hub
Seawater Supply & Pumping Spread

Offshore Hub
Filtration & Well Injection Spread
Operations: First Two Fields

- Typical cleaning train: gas lines

- MeOH lines
 - Typical three-line volume flush

- Export lines
 - Pigged offshore to onshore
 - Pigged back from onshore to offshore for disposal
 - Bidirectional pigs used over foam pigs
Operations

Worksites

- Accommodation work platform (AWP)
- P&A drill rig
- Normally manned platforms
- Normally unmanned satellites
- Work vessels
- Onshore gas terminal

Supply Vessel Based Flushing Spread c/w Flushing 2” HP Hose Deployed to Satellite

Onshore Receiving and Pumping Spread at Terminal
Operations

- Foam pigs used with chemicals on infield lines
- Bidirectional pigs and chemicals used on export lines
- Initial flushing of infield MeOH lines was three times the line volume
- Overflush reduced to a maximum of 20% based on received results
- Overflush on export MeOH lines at 5% in conjunction with gel slug
Operations: First Two Fields, Learnings

- Cleanliness achievable with flushing alone
- Cleaning efficiencies increased with a combined chemical/mechanical approach
 - Reduced overflush requirement
 - Reduced chemical requirement
 - Reduced volume for waste handling and disposal
 - Improved cleanliness results (typically)
 - Reduced operational time
 - Less impact on other ongoing decom operations (e.g., rig movements, well P&A, etc.)
 - Associated reduction in overall cost
Operations: Final Field Additional Challenges

- Dead legs

- Unpiggable tees

- Difficulties associated with subsea sampling of flush fluid
Operations: Final Field

- Combined pigging and chemical approach was still considered best
- Where “solid” pigs were not an option, a customized gel was designed
 - Trial performed on a platform-to-platform line
 - Trial results comparable to “solid” pig with overflush of 1.4 x line volume and 1.5 mg/l OIW
- Where sampling was impractical, agreed overflush of 1.6 x line volume was used
- This was based on previous experience and trial results

- Multiple techniques deployed
 - Solid pigs plus chemicals where architecture would allow
 - Gel and chemicals where architecture would not allow solid pigs
 - Sampling where possible
 - Calculation and agreed overflush where sampling not possible
 - Debris pickup gel included in 4-in. methanol export line
Results

- Total length of lines cleaned
 - 1970 km
 - 1,224 miles

- In 1,224 miles, you can
 - Drive from Land’s End to John o’Groats
 - Then drive back to Penrith
Results and Conclusions

- Average volume pumped per line: 1.132 x line volume
- Average OIW for field: 11.57 mg/l
 - Based on three consecutive reducing samples below 30 mg/l at 15- to 30-min intervals
- 240, 530 bbl (38,240 m³) of fluids and NORM-contaminated debris pumped into disposal wells
- Reduced waste handling, minimal fluids dumped overboard

<table>
<thead>
<tr>
<th>#</th>
<th>Size (")</th>
<th>Designation</th>
<th>Length (km)</th>
<th>OIW (mg/l)</th>
<th>#</th>
<th>Size (")</th>
<th>Designation</th>
<th>Length (km)</th>
<th>OIW (mg/l)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>Gas</td>
<td>3.7</td>
<td>7.7</td>
<td>49</td>
<td>3</td>
<td>MeOH</td>
<td>3.7</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>Gas</td>
<td>5.1</td>
<td>16.4</td>
<td>50</td>
<td>3</td>
<td>MeOH</td>
<td>5.1</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>Gas</td>
<td>5.6</td>
<td>22.9</td>
<td>51</td>
<td>3</td>
<td>MeOH</td>
<td>5.6</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Gas</td>
<td>4.1</td>
<td>14</td>
<td>52</td>
<td>3</td>
<td>MeOH</td>
<td>4.1</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>Gas</td>
<td>3.9</td>
<td>6</td>
<td>53</td>
<td>3</td>
<td>MeOH</td>
<td>3.9</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>Gas</td>
<td>7</td>
<td>9.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>Gas</td>
<td>0.15</td>
<td>By Calc</td>
<td>54</td>
<td>3</td>
<td>MeOH</td>
<td>0.15</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>Gas</td>
<td>13.4</td>
<td>10</td>
<td>55</td>
<td>3</td>
<td>MeOH</td>
<td>13.4</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>Gas</td>
<td>5</td>
<td>4.3</td>
<td>56</td>
<td>3</td>
<td>MeOH</td>
<td>5</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>Gas</td>
<td>13.5</td>
<td>20.4</td>
<td>57</td>
<td>3</td>
<td>MeOH</td>
<td>13.5</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>Gas</td>
<td>3.8</td>
<td>9.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>Gas</td>
<td>26.9</td>
<td>12.2</td>
<td>58</td>
<td>3</td>
<td>MeOH</td>
<td>26.9</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>Gas Export</td>
<td>10.9</td>
<td>14.2</td>
<td>59</td>
<td>3</td>
<td>MeOH</td>
<td>10.9</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>Gas Export</td>
<td>138</td>
<td>18.5</td>
<td>60</td>
<td>3</td>
<td>MeOH</td>
<td>138</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>Gas</td>
<td>4.5</td>
<td>12.5</td>
<td>61</td>
<td>3</td>
<td>MeOH</td>
<td>4.5</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>Gas</td>
<td>0.05</td>
<td>By Calc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>Gas</td>
<td>14</td>
<td>1.55</td>
<td>62</td>
<td>3</td>
<td>MeOH</td>
<td>14</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Gas</td>
<td>20</td>
<td>6.8</td>
<td>63</td>
<td>3</td>
<td>MeOH</td>
<td>20</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>Gas</td>
<td>11</td>
<td>8.39</td>
<td>64</td>
<td>3</td>
<td>MeOH</td>
<td>11</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>Gas</td>
<td>0.2</td>
<td>By Calc</td>
<td>65</td>
<td>3</td>
<td>MeOH</td>
<td>0.2</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>Gas</td>
<td>20.3</td>
<td>26.5</td>
<td>66</td>
<td>3</td>
<td>MeOH</td>
<td>20.3</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>Gas</td>
<td>42</td>
<td>11.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>Gas</td>
<td>0.05</td>
<td>By Calc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>Gas</td>
<td>17.8</td>
<td>11.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>Gas</td>
<td>4.5</td>
<td>6.9</td>
<td>67</td>
<td>3</td>
<td>MeOH</td>
<td>4.5</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>Gas</td>
<td>22.3</td>
<td>16.4</td>
<td>68</td>
<td>3</td>
<td>MeOH</td>
<td>22.3</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>Gas</td>
<td>16.8</td>
<td>10.6</td>
<td>69</td>
<td>3</td>
<td>MeOH</td>
<td>16.8</td>
<td>2018</td>
<td></td>
</tr>
</tbody>
</table>
Results and Conclusions

- Where possible, use a combination of pigs and chemicals for optimal cleaning with minimal pumping
- Where pigging facilities are not available, gel or viscosified fluids are a viable alternative
- Where OIW sampling is not practical, a sensible overflush volume can be calculated
- Where possible, use disposal well to minimize waste handling—consider contingency
 - Spare disposal well and alternative disposal using treatment and overboarding
THANK YOU