ADVANCED FLOW ASSURANCE TOOLS TO MINIMIZE PIGGING RISKS IN CHALLENGING LINES
CONTENTS

1. Introduction
2. Pigging Feasibility
3. Operational Feasibility (Flow Assurance)
4. Need to Combine Pigging Feasibility and Flow Modelling
5. Pigging Feasibility and Flow Modelling – Applications
6. Case Study
7. Summary
8. Q&A
INTRODUCTION

INTEGRITY SERVICES

Working across all assets with all the key disciplines covered in-house

- Pipelines, Flowlines, Flexibles & Risers
- Offshore Structures
- Production Facilities
- Upstream Pipelines
- Tank & Terminal Facilities
- Onshore Distribution
- Gas Networks
- Renewables

Advanced Flow Assurance Tools to Minimize Pigging Risks in Challenging Lines · Ashwin Pinto & Paul Westwood · © ROSEN Group · 18/11/2020
INTRODUCTION

INTEGRITY SERVICES

- Risk and Reliability
- Stress Analysis, Fracture and Fatigue
- Corrosion
- Materials and Welding
- Laboratory Services
- Pigging Feasibility and Optimization
- Flow Assurance
- Geotechnics
- Structures
- Flexibles

Advanced Flow Assurance Tools to Minimize Pigging Risks in Challenging Lines · Ashwin Pinto & Paul Westwood · © ROSEN Group · 18/11/2020
Pigging Feasibility
PIGGING FEASIBILITY RISKS

- All pigging operations contain an element of risk:
 - Stuck or stalled pig
 - Blocked pipeline
 - Damaged pig
 - Damaged infrastructure

- Run success is not guaranteed:
 - Sensor lift-off
 - Damaged cleaning / ILI tool
 - Speed excursions
PIGGING FEASIBILITY CHALLENGES

Operational pigging employed for cleaning operations and management of – liquid, hydrates, solid deposits and corrosion

WHY?
- Minimize liquid holdup to reduce ΔP losses
- Clean sand / wax / scales / debris / hydrates
- Reduce corrosion (under deposit, MIC etc.)
- Effective application of chemical treatment
- Pre-inspection cleaning service

OUTCOMES
- Increase pipeline operational efficiency
- Pipeline integrity – extend life of pipeline
- Minimize production deferment / trips / stoppages
- Minimize sensor lift-off of the ILI tool
‘Achieving ILI run success requires close collaboration between the Client and Contractor teams, where adequate planning and preparation are important factors.’ – POF 2018

Operational Causes of Failed ILI Runs

- Pipeline Cleanliness: 22
- Pipeline Restriction: 41
- Speed Excursions: 37
PIGGING FEASIBILITY CHALLENGES

Operating Conditions

Challenging

Very Challenging

Proficient

Challenging

Pipeline Construction

Wye

Deep Water

Check Valves

Multi-diameter

CRA Cladding

Pipe-in-pipe

Heavy wall thickness

No pigging infrastructure

Multiphase Flow

Mitre bends

Low pressure

Production deferment

Wax deposition

Slide 9
PIGGING FEASIBILITY SOLUTION

- Asset Data
- Data Review
- Site Survey
- Pipeline Threat / Operational Drivers
- Define Infrastructure Constraints
- Specify Campaign Performance Requirements

Optimization Loop
- Define Operating Conditions Flow Assurance
- Define Infrastructure Configuration Options
- Define Inspection Technology Options
- Define Cleaning Technology Options

Cost / Benefit / Risk Analysis

INPUT

OUTPUT

- Technology Selection
- Campaign Sequencing
- Infrastructure Set-up
- Developmental Work
- Contingency Options

Advanced Flow Assurance Tools to Minimize Pigging Risks in Challenging Lines · Ashwin Pinto & Paul Westwood · © ROSEN Group · 18/11/2020
FLOW ASSURANCE INTRODUCTION

Assure transportation fluids from *source to facility* in a *safe* and *economical* manner over the *life of the asset*

- Process conditions
- Hydraulic calculations
- Corrosion, erosion
- Severe slugging
- Solids: sand, slurry, dust etc.
- Gas hydrates, wax and asphaltenes
- Liquid management during pigging
- Production deliverability
- Pressure surge analysis
FLOW ASSURANCE
CHALLENGES DURING PIGGING

• Operating conditions
 o Pressure, temperature, flowrate limits

• Liquids
 o Rate of accumulation
 o Pig generated liquid slug could flood the receiving equipment

• Solids
 o Rate of accumulation and location
 o Avoid “stuck pig” scenario

• Maintaining production
 o Minimize deferment
 o Maximize throughput

• First pass success
 o Pig velocity control within recommended limits
FLOW MODELLING APPLICATION IN PIGGING OPERATIONS

- Estimate solids / liquid inventory
 - Blockages due to deposit build-up
 - Motive pressure for propulsion

- Tool behaviour due to hydraulics
 - Pig wall frictional factors to simulate pig behavior
 - Bypass port sizing to maximize production flow without flooding the slugcatcher

- Pigging optimization
 - Process conditions for optimum tool velocity
 - Pigging frequency

- Pigging diagnostics for flow model validation
 - Data, data and more data!
Need to Combine Pigging Feasibility and Flow Modelling
Objective:

- Optimized process conditions for economical “off-the-shelf” pigging solutions
- Assured piggability of the system
FLOW ASSURANCE & PIGGING FEASIBILITY SERVICES

Cleaning
• Pigging frequency for sand / wax / liquid management
• Liquid holdup estimation and surge calculations
• Pig velocity tracking and validation
• Pigging feasibility & configuration e.g. standard / bypass pig, challenging tool

Inspection
• Pig velocity tracking
• Optimization of pigging operation in single & multiphase flow

Corrosion
• Corrosion models integrated with flow calculations, e.g. DeWaard, Norsok, TOLC IFE
• Support NACE ICDA for un-piggable lines
• ILI data validation
• Inspection location prioritization
• Optimize inhibitor injection rates & performance

Integrity
• Risk studies: Water hammer / pressure surge analysis, blowdown modelling etc.
• Black powder: root cause analysis and mitigation
• Erosion in slurry / sand transporting lines: root cause analysis and mitigation
CASE STUDY – CONDENSATE LINE CLEANING & ILI

OVERVIEW

System

Dual flow line system in deep water (~1500m)
- 22” diameter
- Each ~80 km long
- Flow line 1 produces multiphase fluids
- Flow line 2 supplies dry gas
CASE STUDY – CONDENSATE LINE CLEANING & ILI CHALLENGES

• Client preferred “online” pigging at maximized production:
 o The asset produced most of the client’s revenue.

• Multiphase in deep water → Large liquid holdup (>1500 m³):
 o Limited liquid handling capacity of 50 m³

• Large hydrostatic head
 o Insufficient driving pressure for pigging
 o Well close to backing out

• Different service fluids
 o Compressible gas in one and multiphase fluid in other.

• Maintaining pig velocity challenging in multiphase line
CASE STUDY – CONDENSATE LINE CLEANING & ILI

SCOPE OF WORK

The scope of work consisted of the following:

- Data Review
- Site Visit
- Mechanical Feasibility Study
- Identify Requirements for Cleaning and Baseline Inspection
- Flow Assurance for In-Service Progressive Pigs and ILI
- Develop In-Service Progressive and ILI Procedures
- Emergency Response Procedure
- Pig Tracking Procedure
- Pig Stuck Emergency Rescue Plan
- Supervise Pigging Operation
CASE STUDY – CONDENSATE LINE CLEANING & ILI METHODOLOGY

- **OLGA multiphase hydraulic simulator** employed to estimate the liquid inventory in the flow lines
- Bypass pig calculations
- Critical pig wall frictional factors to model pig behavior
- Various configurations considered:
 - Gas wells, increased gas velocity, standard pigs, passive and active bypass pigs etc.

Optimized cleaning pigging (Configuration 4):
- Sweep the line with gas at high flowrates
- Passive or “fixed” bypass pigging at reduced production
CASE STUDY – CONDENSATE LINE CLEANING & ILI
STANDARD PIG

Liquid Holdup (Standard pig)

Production Line (Flowline 1)
CASE STUDY – CONDENSATE LINE CLEANING & ILI

THE SOLUTION

A standard pig would:

• Cause the wells to back out
• Overwhelm the receive facilities causing a trip / shutdown

Therefore a solution was sought…

Solution

High velocity sweep of the pipeline to remove excess liquid holdup

Cleaning pigs with 3% bypass – Pigging needed to be continuous as liquids were replenished within 24 hours
CASE STUDY – CONDENSATE LINE CLEANING & ILI BYPASS PIG

Liquid Holdup (3% bypass pig)

Production Line (Flowline 1)
CASE STUDY – CONDENSATE LINE CLEANING & ILI

CONCLUSIONS

Overall Results:

![Graph showing Recycle Line and Production Line](attachment:graph.png)

KEY BENEFITS

- **Reliable** and **cost effective** solution for an “online” pigging specification
- An **acceptable level of production** could be maintained
Conclusions
Flow assurance is key for ensuring operational feasibility:

- **OLGA Multiphase simulator** for solid / liquid estimates
- **Pig frictional factors** for predicting bypass pig behavior
- **Access** to PDL diagnostics and inspection data for validation

Combining flow assurance into pigging feasibility studies is beneficial for:

- **Assurance** of a pigging solution
- **Management of risks** in complex challenging assets
- **Profitable, safe and efficient** running of a pipeline asset
Questions…?
THANK YOU FOR JOINING THIS PRESENTATION.