

PPSA – 5th November 2021

WHEN BOTH SHALL MEET: MANAGING INTEGRITY FOR H_2 AND CO₂ CONVERSION

In cooperation with Neil Gallon R. Van-Elteren T. Steinvoorte

presented by

Dr. Daniel Sandana

Principal Engineer

INVESTMENTS INTO HYDROGEN ARE GATHERING MOMENTUM

Announced clean hydrogen capacity through 2030

Breakdown of announced investments by maturity

Projected hydrogen investment through 2030 USD bn

Source: Hydrogen Insights Report 2021, Hydrogen Council, McKinsey & Company, February 2021

Daniel Sandana · © ROSEN Group · 2021

INVESTMENTS INTO HYDROGEN ARE GATHERING MOMENTUM

Announced clean hydrogen capacity through 2030

Role of 'Blue hydrogen' in transition

Source: Hydrogen Insights Report 2021, Hydrogen Council, McKinsey & Company, February 2021

Daniel Sandana · © ROSEN Group · 2021

'Investments into hydrogen are gathering momentum'

Announced clean hydrogen capacity through 2030

Cumulative production capacity

Role of 'Blue hydrogen' in transition

"Without CCUS, the transition would become much more challenging"

~2.5 Mt blue H_2 by 2030 (SMR)

- ~ 50 million tons CO₂
- + CO & H_2 S by-products
 - 'CCUS is necessary'

Source: Hydrogen Insights Report 2021, Hydrogen Council, McKinsey & Company, February 2021

Daniel Sandana. © ROSEN Group · 2021

Retrofitting existing pipelines for H₂

Connecting industrial clusters to an emerging infrastructure in 2030

Dedicated European Hydrogen Backbone can develop with a total length of approximately 11,600 km, consisting mainly of retrofitted existing natural gas pipelines.

Regional backbones are expected to form in and around first-mover hydrogen valleys.

Growing network by 2035 covers more countries and enables import

The European Hydrogen Backbone will continue to grow, covering more regions and developing new interconnections across member states.

Dedicated hydrogen storage facilities such as salt caverns, depleted fields and aquifers become increasingly important to balance fluctuations in supply and demand.

Mature infrastructure stretching towards all directions by 2040

The proposed backbone can have a total length of 39,700 km, consisting of approximately 69% retrofitted existing infrastructure and 31% of new hydrogen pipelines.

Total estimate investment is expected to be between 43 and 81 billion euros

Retrofitting existing pipelines for CO₂

"Transportation infrastructure to be built in the coming 30-40 years to be ~ 100 times > than current"

Repurposing Existing Assets

Daniel Sandana. © ROSEN Group · 2021

Daniel Sandana. © ROSEN Group · 2021

....Hydrogen challenges

ROSEN

empowered by technology

....Hydrogen challenges

Property	Effect of Hydrogen
Strength	↔ (?)
Ductility	\downarrow
Fracture Toughness	\downarrow
Time-dependant crack threats (e.g. fatigue, SCC)	\uparrow

Daniel Sandana. © ROSEN Group · 2021

Daniel Sandana. © ROSEN Group · 2021

...Hydrogen

Daniel Sandana. © ROSEN Group · 2021

...Hydrogen

Hydrocarbon pipelines converted to H₂

"ID material DNA, targeted material sampling & testing ... at core of conversion strategies"

Management ('crack')

- ✓ Understand 'Materials' DNA
- ✓ ID Crack baseline
- ✓ ID hard spot baseline
- ✓ ID high plastic deformation baseline
- Mat. Segmentation & Testing (Prop., CGRs)

- ✓ Monitor Cracks (service)
 - ✓ Monitor high plastic deformation (service)
- ✓ Etc.

Pre-conversion

Crack Management in Hydrogen pipelines, Sandana D et al., ICHS 2021

Existing pipeline materials and the transition to hydrogen, Gallon N et al., PTC 2021

Daniel Sandana · © ROSEN Group · 2021

empowered by technology

Daniel Sandana. © ROSEN Group · 2021

Daniel Sandana. © ROSEN Group · 2021

Conversion managementCO₂ challenges

Fracture control (LoC)

- ✓ Dense CO₂
- ✓ Ductile running fracture (LoC)
- ✓ Crack arrestors
- ✓ Fracture toughness
- ✓ API 5L/ISO 3183... No mandatory requirements (hydrocarbon design)

Daniel Sandana. © ROSEN Group · 2021

....CO₂

(dense)

Management

 ID Water Solubility thresholds

 ✓ Mat. segm. & fracture toughness testing

 ✓ Requirements for crack arrestors (Practical?

 ✓ ID baseline corrosion & cracks (pre-service)

 ✓ Water management

 ✓ Monitor metal losses & cracks (operations)

> Crack Management in Hydrogen pipelines, Sandana D et al., ICHS 2021

Daniel Sandana. © ROSEN Group · 2021

ILI strategies & challenges

Daniel Sandana. © ROSEN Group · 2021

Daniel Sandana. © ROSEN Group · 2021

Daniel Sandana · © ROSEN Group · 2021

- 10" x 10 km
- Service Gaseous H₂
- Installed 1996
- Inspection practices for H₂ lines costly and time-consuming
- 2015 ROSEN ILI MFL & geometric in H₂

Daniel Sandana. © ROSEN Group · 2021

ILIs in H₂ ...Case study

Non-standard cups (different hardness)

- ✓ Lower the risk of static electricity
- ✓ Resistance to decomposition
- ✓ Resistance to uneven wear

European Union's ATEX directives

- ✓ Flameproof enclosure for the components
- ✓ Pressurised enclosure for the electronics
- ✓ Intrinsic safety with voltage-restricted electrical circuits

Magnets protection

✓ Protection against H_2

Assessment of flow conditions

- ✓ Standard set-up P_{min} of 435 psi.
- P of ~270 psi & flow rate of 11 MMscfd required.
- Application of various bypass holes and notches to design for reduction of excessive velocity from pressure build-up in installations while still providing enough seal to propel the tool through the line.

*ILIs in H*₂Case study

Daniel Sandana. © ROSEN Group · 2021

*ILIs in dense CO*₂Challenges

Challenges

Chemical degradation & explosive decompression

High wear

Damage of electronic components

Affected components

Non-metallic – multiple e.g. cables, sensors, seals

Tool cup & discs

Electronic components

Reasons

Interaction with dense CO₂ Explosive decompression (end of ILI run)

Dry environments

Build-up of electrostatic charge on tool due to movement of cups along pipe wall in dry environment

Leads to high voltages generated between tool & pipeline, resulting in a discharge

Depends on position and intensity of discharge

Daniel Sandana- © ROSEN Group - 2021

*ILIs in dense CO*₂Challenges

Challenges

Chemical degradation & explosive decompression

High wear

Damage of electronic components

Affected components

Non-metallic – multiple e.g. cables, sensors, seals

Tool cup & discs

Electronic components

Management

Control of decompression rate & material selection

Material selection or engineering design solutions e.g. use of support wheels, wear reinforced cups & brushes.

Development of conductive PU to minimise electrostatic build-up / protective shielding on delicate electronic components

Daniel Sandana- © ROSEN Group - 2021

ILIs in dense CO₂

Case studies

Pipeline Design	
24" OD x 116 km	

24" OD x 120 km

Operations

131 bar, 16ºC

134 bar

Post-run

ROSEN empowered by technology

Tool deployed

Geometric EGP & Metal loss MFL

Geometric EGP & Metal loss MFL

Daniel Sandana. © ROSEN Group · 2021

Storage

Daniel Sandana. © ROSEN Group · 2021

Conclusions

Integrity Management ...NG vs Hydrogen & CO₂...

... Understand your <u>materials</u>...

...Understand your Hot spots... Hard spots, bending strain, geometric, etc.

...ILIs... Challenges but NOT insurmountable

Storage

Daniel Sandana. © ROSEN Group · 2021

presented by **Dr. Daniel Sandana**

Principal Engineer dsandana@rosen-group.com

Neil Gallon

Principal Engineer ngallon@rosen-group.com

- > Safely Managing the Transition of Pipelines to H_2 , E.-Peppler M et al. World H_2 congress 2021
- > Crack Management in Hydrogen pipelines, Sandana D et al., ICHS 2021
- Existing pipeline materials and the transition to hydrogen, Gallon N et al., PTC 2021

THANK YOU FOR JOINING!

